<![CDATA[Newsroom University of Swagֱ]]> /about/news/ en Tue, 22 Oct 2024 13:34:04 +0200 Tue, 22 Oct 2024 11:32:07 +0200 <![CDATA[Newsroom University of Swagֱ]]> https://content.presspage.com/clients/150_1369.jpg /about/news/ 144 Swagֱ celebrates 20 years since graphene breakthrough /about/news/manchester-celebrates-20-years-since-graphene-breakthrough/ /about/news/manchester-celebrates-20-years-since-graphene-breakthrough/675071Swagֱ is marking two decades since the discovery of graphene: the Nobel Prize-winning ‘wonder material’, which was first isolated by Professor Sir Andre Geim and Professor Sir Kostya Novoselov on this day in 2004.

]]>
Swagֱ is marking two decades since the discovery of graphene: the Nobel Prize-winning ‘wonder material’, which was first isolated by Professor Sir Andre Geim and Professor Sir Kostya Novoselov on this day in 2004.

Although scientists knew one atom thick, two-dimensional crystal graphene existed, no-one had figured out how to extract it from graphite, until Professor Geim and Professor Novoselov’s groundbreaking work in Swagֱ in 2004.

Geim and Novoselov frequently held ‘Friday night experiments’, where they would play around with ideas and experiments that weren’t necessarily linked to their usual research. It was through these experiments that the two first isolated graphene, by using sticky tape to peel off thin flakes of graphite, ushering in a new era of material science.

Their seminal paper ‘, has since been cited over 40,000 times, making it one of the most highly referenced scientific papers of all time.

What Andre and Kostya had achieved was a profound breakthrough, which would not only earn the pair a Nobel Prize in 2010 but would revolutionise the scientific world.

The vast number of products, processes and industries for which graphene could significantly impact all stem from its extraordinary properties. No other material has the breadth of superlatives that graphene boasts:

  • It is many times stronger than steel, yet incredibly lightweight and flexible
  • It is electrically and thermally conductive but also transparent
  • It is the world’s first two-dimensional material and is one million times thinner than the diameter of a single human hair.

It’s areas for application are endless: transport, medicine, electronics, energy, defence, desalination, are all being transformed by graphene research.

In biomedical technology, graphene’s unique properties allow for groundbreaking biomedical applications, such as targeted drug delivery and DIY health-testing kits. In sport, graphene-enhanced running shoes deliver more grip, durability and 25% greater energy return than standard running trainers – as well as the world’s first .

Speaking at the , hosted by Swagֱ, Professor Sir Andre Geim said: “If you have an electric car, graphene is there. If you are talking about flexible, transparent and wearable electronics, graphene-like materials have a good chance of being there. Graphene is also in lithium ion batteries as it improves these batteries by 1 or 2 per cent.”

The excitement, interest and ambition surrounding the material has created a ‘graphene economy’, which is increasingly driven by the challenge to tackle climate change, and for global economies to achieve zero carbon.

At the heart of this economy is Swagֱ, which has built a model research and innovation community, with graphene at its core. The enables academics and their industrial partners to work together on new applications of graphene and other 2D materials, while the accelerates lab-market development, supporting more than 50 spin-outs and numerous new technologies.

Professor James Baker,  CEO of Graphene@Swagֱ said: “As we enter the 20th anniversary since the first discovery of graphene, we are now seeing a real ‘tipping point’ in the commercialisation of products and applications, with many products now in the market or close to entering. We are also witnessing a whole new eco-system of businesses starting to scale up their products and applications, many of which are based in Swagֱ."

What about the next 20 years?

The next 20 years promise even greater discoveries and Swagֱ remains at the forefront of exploring the limitless graphene yields.

Currently, researchers working with INBRAIN Neuroelectronics, with funding from the European Commission’s Graphene Flagship, are developing brain implants from graphene which could enable precision surgery for diseases such as cancer.

Researchers have also developed wearable sensors, based on a 2D material called hexagonal boron nitride (h-BN), which have the potential to change the way respiratory health is monitored.

As for sustainability, Dr Qian Yang is using nanocapillaries made from graphene that could lead to the development of a brand-new form of , while others are looking into Graphene’s potential in grid applications and storing wind or solar power. Graphene is also being used to reinforce , to reduce cement use – one of the leading causes of global carbon dioxide.

Newly-appointed Royal Academy of Engineering Research Chair, Professor Rahul Nair, is investigating graphene-based membranes that can be used as water filters and could transform access to clean drinking water.

Speaking at the World Academic Summit, Professor Sir Andre Geim said: “Thousands of people are trying to understand how it works. I would not be surprised if graphene gets another Nobel prize or two given there are so many people who believe in this area of research.”

Discover more

To hear Andre’s story, including how he and Kostya discovered the wonder material in a Friday night lab session, visit: 

  •  

To find out more about Swagֱ’s work on graphene, visit: 

  •  

To discover our world-leading research centre, or commercial accelerator, visit

To find out how we’re training the next generation of 2D material scientists and engineers, visit:

  • .
]]>
th anniversary since the first discovery of graphene, we are now seeing a real ‘tipping point’ in the commercialisation of products and applications, with many products now in the market or close to entering.]]> Tue, 22 Oct 2024 09:26:24 +0100 https://content.presspage.com/uploads/1369/bce37096-064c-4bc9-9dc0-993b70794b41/500_galiqllxqaaonl8.jpg?10000 https://content.presspage.com/uploads/1369/bce37096-064c-4bc9-9dc0-993b70794b41/galiqllxqaaonl8.jpg?10000
Researchers unveil energy storage mechanism in the thinnest possible lithium-ion battery /about/news/researchers-unveil-energy-storage-mechanism-in-the-thinnest-possible-lithium-ion-battery/ /about/news/researchers-unveil-energy-storage-mechanism-in-the-thinnest-possible-lithium-ion-battery/657011A team of scientists from the University of Swagֱ has achieved a significant breakthrough in understanding lithium-ion storage within the thinnest possible battery anode - composed of just two layers of carbon atoms. Their research, published in , shows an unexpected ‘in-plane staging’ process during lithium intercalation in bilayer graphene, which could pave the way for advancements in energy storage technologies.

]]>
A team of scientists from the University of Swagֱ has achieved a significant breakthrough in understanding lithium-ion storage within the thinnest possible battery anode - composed of just two layers of carbon atoms. Their research, published in , shows an unexpected ‘in-plane staging’ process during lithium intercalation in bilayer graphene, which could pave the way for advancements in energy storage technologies.

Lithium-ion batteries, which power everything from smartphones and laptops to electric vehicles, store energy through a process known as ion intercalation. This involves lithium ions slipping between layers of graphite - a material traditionally used in battery anodes, when a battery is charged. The more lithium ions that can be inserted and later extracted, the more energy the battery can store and release. While this process is well-known, the microscopic details have remained unclear. The Swagֱ team’s discovery sheds new light on these details by focusing on bilayer graphene, the smallest possible battery anode material, consisting of just two atomic layers of carbon.

In their experiments, the researchers replaced the typical graphite anode with bilayer graphene and observed the behaviour of lithium ions during the intercalation process. Surprisingly, they found that lithium ions do not intercalate between the two layers all at once or in a random fashion. Instead, the process unfolds in four distinct stages, with lithium ions arranging themselves in an orderly manner at each stage. Each stage involves the formation of increasingly dense hexagonal lattices of lithium ions.

, who led the research team, commented, "the discovery of 'in-plane staging' was completely unexpected. It revealed a much greater level of cooperation between the lattice of lithium ions and the crystal lattice of graphene than previously thought. This understanding of the intercalation process at the atomic level opens up new avenues for optimising lithium-ion batteries and possibly exploring new materials for enhanced energy storage."

The study also revealed that bilayer graphene, while offering new insights, has a lower lithium storage capacity compared to traditional graphite. This is due to a less effective screening of interactions between positively charged lithium ions, leading to stronger repulsion and causing the ions to remain further apart. While this suggests that bilayer graphene may not offer higher storage capacity than bulk graphite, the discovery of its unique intercalation process is a key step forward. It also hints at the potential use of atomically thin metals to enhance the screening effect and possibly improve storage capacity in the future.

This pioneering research not only deepens our understanding of lithium-ion intercalation but also lays the groundwork for the development of more efficient and sustainable energy storage solutions. As the demand for better batteries continues to grow, the findings in this research could play a key role in shaping the next generation of energy storage technologies.

 

The (NGI) is a world-leading graphene and 2D material centre, focussed on fundamental research. Based at Swagֱ, where graphene was first isolated in 2004 by Professors Sir Andre Geim and Sir Kostya Novoselov, it is home to leaders in their field – a community of research specialists delivering transformative discovery. This expertise is matched by £13m leading-edge facilities, such as the largest class 5 and 6 cleanrooms in global academia, which gives the NGI the capabilities to advance underpinning industrial applications in key areas including: composites, functional membranes, energy, membranes for green hydrogen, ultra-high vacuum 2D materials, nanomedicine, 2D based printed electronics, and characterisation.

]]>
Fri, 06 Sep 2024 13:14:00 +0100 https://content.presspage.com/uploads/1369/500_ngi-2.jpg?10000 https://content.presspage.com/uploads/1369/ngi-2.jpg?10000
National Graphene Institute to play key role in UK-India Technology Security Initiative /about/news/national-graphene-institute-to-play-key-role-in-uk-india-technology-security-initiative/ /about/news/national-graphene-institute-to-play-key-role-in-uk-india-technology-security-initiative/653750The National Graphene Institute (NGI) at Swagֱ has been identified as a key stakeholder in the UK-India Technology Security Initiative (TSI) following its on 24 July.

]]>
The National Graphene Institute (NGI) at Swagֱ has been identified as a key stakeholder in the UK-India Technology Security Initiative (TSI) following its on 24 July.

Upon his visit to India, Foreign Secretary David Lammy met Prime Minister Narendra Modi and both governments committed to developing collaboration between Swagֱ , the University of Cambridge Graphene Centre and the Indian Institute for Science Bengaluru Centre for Nano Science & Engineering on advanced (two-dimensional) 2D and atomically thin materials and nanotechnology.

The TSI will focus on boosting economic growth in both countries and tackling issues such as telecoms security and semiconductor supply chain resilience. For the University specifically, the collaboration will scope joint research ventures, facilitate student and start-up exchanges, and open access to world-leading laboratories and prototyping facilities.

Swagֱ is already collaborating with a number of established partners in India, which has resulted in joint PhD programmes with the Indian Institute of Technology Kharagpur and the Indian Institute of Science, Bengaluru, which include a number of projects on 2D materials. The University is already immersed in the fields of Critical Minerals and Artificial Intelligence highlighted in the TSI, and hosted a UK-India Critical Minerals workshop in November 2023.

Lindy Cameron, British High Commissioner to India, said: “The UK-India Technology Security Initiative will help shape the significant science and technology capabilities of both countries to deliver greater security, growth and wellbeing for our citizens. We are delighted to have Swagֱ play a key part in this, particularly in our collaboration on advanced materials and critical minerals.”

This year Swagֱ is celebrating its bicentenary and it recently hosted a gala celebration in India at the Taj Lands End hotel Mumbai, attended by over 200 Indian alumni and representatives from our current and prospective partner organisations in the country. The University has also awarded honorary degrees to eminent Indian academic and industrial leaders including Professor C.N.R Rao and Mr Ratan Tata.

Advanced Materials is one of Swagֱ’s research beacons, and the institution has a long history of innovation in this space. In 2004, the extraction of graphene from graphite was achieved by two University of Swagֱ researchers, and with their pioneering work recognised with the Nobel Prize in Physics in 2010.

]]>
Thu, 01 Aug 2024 11:20:14 +0100 https://content.presspage.com/uploads/1369/20844caf-06b0-42fd-a9c0-5336f4b12eb8/500_20240514-115450.jpg?10000 https://content.presspage.com/uploads/1369/20844caf-06b0-42fd-a9c0-5336f4b12eb8/20240514-115450.jpg?10000
Semiconductor research at Swagֱ /about/news/semiconductor-research-at-the-university-of-manchester/ /about/news/semiconductor-research-at-the-university-of-manchester/650815Swagֱ is a world-leader in the novel fabrication of semiconductors devices from 2D materials to silicon. Alongside its world-leading academic expertise, it hosts nationally-leading institutes, providing sector-leading capability.

]]>
Swagֱ is a world-leader in the novel fabrication of semiconductors devices from 2D materials to silicon. Alongside its world-leading academic expertise, it hosts nationally-leading institutes, providing sector-leading capability.

]]>
(NGI) unique facilities include 1500m2 of ISO class 5 and 6 cleanrooms, providing researchers with the capability to work with 150 different types of 2D materials and fabricate nanodevices. It is recognised globally for driving novel advanced materials device discovery. Cleanrooms are an essential facility when developing nanoscale technologies, to ensure reproducibility, reduction of devices defects. The NGI contains many unique and internally world-class device assembly capabilities specifically designed for 2D Materials device fabrication, and the ability to work with industry including wafer capability to test at some scale. Its cleanrooms have also been built to be highly adaptable for future fabrication needs. This enables it to adapt to adopt equipment, funded by government or through industry collaboration, that will allow it translate prototypes and test to a scale that can be applicable to industry. The extension of this capability would enable the UK to undertake higher TRL activity on one single site, accelerating discovery and innovation of the sector. 

(PSI) is a multidisciplinary centre at the UoM providing comprehensive photonic characterisation spanning the x-ray to THz spectral region down femtosecond timescales, low-temperatures (~1K) and high magnetic field (7T). The PSI blends the research activities of physicists, chemists, materials scientists and engineers studying areas from light-matter interactions through to materials deposition, characterisation and photonic device fabrication and measurement. It is a central contribution to the UK Henry Royce Institute at the UoM and houses the world-leading EPSRC Henry Moseley X-ray Imaging Facility and the Electron Paramagnetic Resonance (EPR) Spectroscopy facility, National X-ray Photoelectron Spectroscopy (XPS) Facilities, comprehensive secondary ion mass spectroscopy facilities, and the joint UoM-NPL cryogenic scanning near-field UV-THz microscopy facility. 

The proximity of the NGI and PSI offering is unique, globally and attracts a high concentration of specialists academics and industry applications engineers to work in this research and development environment. This is supported by the surrounding internally-leading advanced materials characterisation including high-resolution electron microscopy. Together this forms the heart of our Centre for Quantum Science & Engineering. 

The (GEIC) compliments the NGI/PSI ecosystem by offering scale up support. Work in the facility encompasses a broad range of application areas including optoelectronic devices, composites, coatings, energy, membranes & coatings and Thin Film Deposition labs, with over £1 million investment in equipment in GEIC, including a roll-to-roll growth system for continuous production and a metal-organic CVD system (MOCVD) capable of 2D materials growth on a 4-inch wafers. 

To discuss semicoductor research, talk about potential collaboration, or to access facilities
 

]]>
Mon, 01 Jul 2024 10:28:14 +0100 https://content.presspage.com/uploads/1369/4ae4e5a6-cb0f-4eb2-bee1-50b4f1cbd73f/500_semiconductors1000x1000.jpg?10000 https://content.presspage.com/uploads/1369/4ae4e5a6-cb0f-4eb2-bee1-50b4f1cbd73f/semiconductors1000x1000.jpg?10000
Electric fields catalyse graphene’s energy and computing prospects /about/news/electric-fields-catalyse-graphenes-energy-and-computing-prospects/ /about/news/electric-fields-catalyse-graphenes-energy-and-computing-prospects/637052Researchers at the have made a groundbreaking discovery that could revolutionise energy harnessing and information computing. Their study, published in , reveals how electric field effects can selectively accelerate coupled electrochemical processes in graphene.

]]>
Researchers at the have made a groundbreaking discovery that could revolutionise energy harnessing and information computing. Their study, published in , reveals how electric field effects can selectively accelerate coupled electrochemical processes in graphene.

Electrochemical processes are essential in renewable energy technologies like batteries, fuel cells, and electrolysers. However, their efficiency is often hindered by slow reactions and unwanted side effects. Traditional approaches have focused on new materials, yet significant challenges remain.

The Swagֱ team, led by , has taken a novel approach. They have successfully decoupled the inseparable link between charge and electric field within graphene electrodes, enabling unprecedented control over electrochemical processes in this material. The breakthrough challenges previous assumptions and opens new avenues for energy technologies.

Dr Marcelo Lozada-Hidalgo sees this discovery as transformative, “We’ve managed to open up a previously inaccessible parameter space. A way to visualise this is to imagine a field in the countryside with hills and valleys. Classically, for a given system and a given catalyst, an electrochemical process would run through a set path through this field. If the path goes through a high hill or a deep valley – bad luck. Our work shows that, at least for the processes we investigated here, we have access to the whole field. If there is a hill or valley we do not want to go to, we can avoid it.”

The study focuses on proton-related processes fundamental for hydrogen catalysts and electronic devices. Specifically, the team examined two proton processes in graphene:

Proton Transmission: This process is important for developing new hydrogen catalysts and fuel cell membranes.

Proton Adsorption (Hydrogenation): Important for electronic devices like transistors, this process switches graphene’s conductivity on and off.

Traditionally, these processes were coupled in graphene devices, making it challenging to control one without impacting the other. The researchers managed to decouple these processes, finding that electric field effects could significantly accelerate proton transmission while independently driving hydrogenation. This selective acceleration was unexpected and presents a new method to drive electrochemical processes.

Highlighting the broader implication in energy applications, Dr Jincheng Tong, first author of the paper, said “We demonstrate that electric field effects can disentangle and accelerate electrochemical processes in 2D crystals. This could be combined with state-of-the-art catalysts to efficiently drive complex processes like CO2 reduction, which remain enormous societal challenges.”

Dr Yangming Fu, co-first author, pointed to potential applications in computing: “Control of these process gives our graphene devices dual functionality as both memory and logic gate. This paves the way for new computing networks that operate with protons.  This could enable compact, low-energy analogue computing devices.”

Since publication, a review of the paper was included in Nature’s News & Views section, which summarises high-impact research and provides a forum where scientific news is shared with a wide audience spanning a range of disciplines: .

 

The National Graphene Institute (NGI) is a world-leading graphene and 2D material centre, focussed on fundamental research. Based at Swagֱ, where graphene was first isolated in 2004 by Professors Sir Andre Geim and Sir Kostya Novoselov, it is home to leaders in their field – a community of research specialists delivering transformative discovery. This expertise is matched by £13m leading-edge facilities, such as the largest class 5 and 6 cleanrooms in global academia, which gives the NGI the capabilities to advance underpinning industrial applications in key areas including: composites, functional membranes, energy, membranes for green hydrogen, ultra-high vacuum 2D materials, nanomedicine, 2D based printed electronics, and characterisation.

]]>
Wed, 19 Jun 2024 16:05:00 +0100 https://content.presspage.com/uploads/1369/8fcb7913-5492-48f1-aecd-21201e89d2bd/500_guoyanwangandyanliangfromuniversityofscienceandtechnologyofchina.png?10000 https://content.presspage.com/uploads/1369/8fcb7913-5492-48f1-aecd-21201e89d2bd/guoyanwangandyanliangfromuniversityofscienceandtechnologyofchina.png?10000
Researchers engineer new approach for controlling thermal emission /about/news/researchers-engineer-new-approach-for-controlling-thermal-emission/ /about/news/researchers-engineer-new-approach-for-controlling-thermal-emission/635694Swagֱ’s National Graphene Institute has spearheaded an international team to engineer a novel approach for controlling thermal emission, detailed in a paper published in

]]>
Swagֱ’s has spearheaded an international team to engineer a novel approach for controlling thermal emission, detailed in a paper published in . This breakthrough offers new design strategies beyond conventional materials, with promising implications for thermal management and camouflage technologies.

The international team, which also included Penn State College of Engineering, Koc University in Turkey and Vienna University of Technology in Austria, has developed a unique interface that localises thermal emissions from two surfaces with different geometric properties, creating a “perfect” thermal emitter. This platform can emit thermal light from specific, contained emission areas with unit emissivity.

, professor of 2D device materials at Swagֱ, explains, “We have demonstrated a new class of thermal devices using concepts from topology — a branch of mathematics studying properties of geometric objects — and from non-Hermitian photonics, which is a flourishing area of research studying light and its interaction with matter in the presence of losses, optical gain and certain symmetries.”

The team said the work could advance thermal photonic applications to better generate, control and detect thermal emission. One application of this work could be in satellites, said co-author Prof Sahin Ozdemir, professor of engineering science and mechanics at Penn State. Faced with significant exposure to heat and light, satellites equipped with the interface could emit the absorbed radiation with unit emissivity along a specifically designated area designed by researchers to be incredibly narrow and in whatever shape is deemed necessary.   

Getting to this point, though, was not straight forward, according to Ozdemir. He explained part of the issue is to create a perfect thermal absorber-emitter only at the interface while the rest of the structures forming the interface remains ‘cold’, meaning no absorption and no emission.

“Building a perfect absorber-emitter—a black body that flawlessly absorbs all incoming radiation—proved to be a formidable task,” Ozdemir said. However, the team discovered that one can be built at a desired frequency by trapping the light inside an optical cavity, formed by a partially reflecting first mirror and a completely reflecting second mirror: the incoming light partially reflected from the first mirror and the light which gets reflected only after being trapped between the two mirrors exactly cancel each other. With the reflection thus being completely suppressed, the light beam is trapped in the system, gets perfectly absorbed, and emitted in the form of thermal radiation.

To achieve such an interface, the researchers developed a cavity stacked with a thick gold layer that perfectly reflects incoming light and a thin platinum layer that can partially reflect incoming light. The platinum layer also acts as a broadband thermal absorber-emitter. Between the two mirrors is a transparent dielectric called parylene-C.

The researchers can adjust the thickness of the platinum layer as needed to induce the critical coupling condition where the incoming light is trapped in the system and perfectly absorbed, or to move the system away from the critical coupling to sub- or super-critical coupling where perfect absorption and emission cannot take place.

“Only by stitching two platinum layers with thicknesses smaller and larger than the critical thickness over the same dielectric layer, we create a topological interface of two cavities where perfect absorption and emission are confined. Crucial here is that the cavities forming the interface are not at critical coupling condition,” said first author M. Said Ergoktas, a research associate at Swagֱ 

The development challenges conventional understanding of thermal emission in the field, according to co-author Stefan Rotter, professor of theoretical physics at the Vienna University of Technology, “Traditionally, it has been believed that thermal radiation cannot have topological properties because of its incoherent nature.”

According to Kocabas, their approach to building topological systems for controlling radiation is easily accessible to scientists and engineers.  

“This can be as simple as creating a film divided into two regions with different thicknesses such that one side satisfies sub-critical coupling, and the other is in the super-critical coupling regime, dividing the system into two different topological classes,” Kocabas said.

The realised interface exhibits perfect thermal emissivity, which is protected by the reflection topology and “exhibits robustness against local perturbations and defects,” according to co-author Ali Kecebas, a postdoctoral scholar at Penn State. The team confirmed the system’s topological features and its connection to the well-known non-Hermitian physics and its spectral degeneracies known as exceptional points through experimental and numerical simulations.

“This is just a glimpse of what one can do in thermal domain using topology of non-Hermiticity. One thing that needs further exploration is the observation of the two counterpropagating modes at the interface that our theory and numerical simulations predict,” Kocabas said.

 

The National Graphene Institute (NGI) is a world-leading graphene and 2D material centre, focussed on fundamental research. Based at Swagֱ, where graphene was first isolated in 2004 by Professors Sir Andre Geim and Sir Kostya Novoselov, it is home to leaders in their field – a community of research specialists delivering transformative discovery. This expertise is matched by £13m leading-edge facilities, such as the largest class 5 and 6 cleanrooms in global academia, which gives the NGI the capabilities to advance underpinning industrial applications in key areas including: composites, functional membranes, energy, membranes for green hydrogen, ultra-high vacuum 2D materials, nanomedicine, 2D based printed electronics, and characterisation.

]]>
Fri, 07 Jun 2024 09:32:38 +0100 https://content.presspage.com/uploads/1369/4238e6dc-4f78-4bb6-8795-0703b3c919d2/500_picture3-3.jpg?10000 https://content.presspage.com/uploads/1369/4238e6dc-4f78-4bb6-8795-0703b3c919d2/picture3-3.jpg?10000
Swagֱ Scientists Find Novel One-Dimensional Superconductor /about/news/manchester-scientists-find-novel-one-dimensional-superconductor/ /about/news/manchester-scientists-find-novel-one-dimensional-superconductor/629722Researchers at Swagֱ have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system.

]]>
In a significant development in the field of superconductivity, researchers at have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.

Superconductivity, the ability of certain materials to conduct electricity with zero resistance, holds profound potential for advancements of quantum technologies. However, achieving superconductivity in the quantum Hall regime, characterised by quantised electrical conductance, has proven to be a mighty challenge.

The research, published this week (24 April 2024) in , details extensive work of the Swagֱ team led by Professor Andre Geim, Dr Julien Barrier and Dr Na Xin to achieve superconductivity in the quantum Hall regime. Their initial efforts followed the conventional route where counterpropagating edge states were brought into close proximity of each other. However, this approach proved to be limited.

"Our initial experiments were primarily motivated by the strong persistent interest in proximity superconductivity induced along quantum Hall edge states," explains Dr Barrier, the paper's lead author. "This possibility has led to numerous theoretical predictions regarding the emergence of new particles known as non-abelian anyons."

The team then explored a new strategy inspired by their earlier work demonstrating that boundaries between domains in graphene could be highly conductive. By placing such domain walls between two superconductors, they achieved the desired ultimate proximity between counterpropagating edge states while minimising effects of disorder.

"We were encouraged to observe large supercurrents at relatively ‘balmy’ temperatures up to one Kelvin in every device we fabricated," Dr Barrier recalls.

Further investigation revealed that the proximity superconductivity originated not from the quantum Hall edge states propagating along domain walls, but rather from strictly 1D electronic states existing within the domain walls themselves. These 1D states, proven to exist by the theory group of Professor Vladimir Falko’s at the National Graphene Institute, exhibited a greater ability to hybridise with superconductivity as compared to quantum Hall edge states. The inherent one-dimensional nature of the interior states is believed to be responsible for the observed robust supercurrents at high magnetic fields.

This discovery of single-mode 1D superconductivity shows exciting avenues for further research. “In our devices, electrons propagate in two opposite directions within the same nanoscale space and without scattering", Dr Barrier elaborates. "Such 1D systems are exceptionally rare and hold promise for addressing a wide range of problems in fundamental physics."

The team has already demonstrated the ability to manipulate these electronic states using gate voltage and observe standing electron waves that modulated the superconducting properties.

is fascinating to think what this novel system can bring us in the future. The 1D superconductivity presents an alternative path towards realising topological quasiparticles combining the quantum Hall effect and superconductivity,” concludes Dr Xin. "This is just one example of the vast potential our findings holds."

20 years after the advent of the first 2D material graphene, this research by Swagֱ represents another step forward in the field of superconductivity. The development of this novel 1D superconductor is expected to open doors for advancements in quantum technologies and pave the way for further exploration of new physics, attracting interest from various scientific communities.

 

The is a world-leading graphene and 2D material centre, focussed on fundamental research. Based at Swagֱ, by Professors Sir Andre Geim and Sir Kostya Novoselov, it is home to leaders in their field – a community of research specialists delivering transformative discovery. This expertise is matched by £13m leading-edge facilities, such as the largest class 5 and 6 in global academia, which gives the NGI the capabilities to advance underpinning industrial applications in key areas including: composites, functional membranes, energy, membranes for green hydrogen, ultra-high vacuum 2D materials, nanomedicine, 2D based printed electronics, and characterisation.

]]>
Thu, 25 Apr 2024 09:30:00 +0100 https://content.presspage.com/uploads/1369/500_graphenemembranes1.jpg?10000 https://content.presspage.com/uploads/1369/graphenemembranes1.jpg?10000
Swagֱ researchers awarded prestigious funding to pursue projects that could lead to major scientific breakthroughs /about/news/manchester-researchers-awarded-prestigious-funding-to-pursue-projects-that-could-lead-to-major-scientific-breakthroughs/ /about/news/manchester-researchers-awarded-prestigious-funding-to-pursue-projects-that-could-lead-to-major-scientific-breakthroughs/627491Seven leading Swagֱ researchers are being awarded highly prestigious European Research Council (ERC) advanced grants.

]]>
Seven leading Swagֱ researchers are being awarded highly prestigious designed to provide outstanding research leaders with the opportunity to pursue ambitious, curiosity-driven projects that could lead to major scientific breakthroughs.

Described by the ERC as among the EU’s most prestigious and competitive grants, today’s funding has been awarded to the following senior research leaders:

  • , Professor of Emerging Optoelectronics, based in the and , to investigate scalable nanomanufacturing paradigms for emerging electronics (SNAP). The program aims to develop sustainable large-area electronics, a potential game-changer in emerging semiconductor markets, that will help reduce society's reliance on current polluting technologies while enabling radically new applications.
  • , Chair in Evolutionary Biology, in the School of Biological Sciences, to investigate how genomic complexity shapes long-term bacterial evolution and adaptation.
  • , in the Department of Physics and Astronomy, and Director of the Photon Science Institute to develop a table-top nuclear facility to produce cold actinide molecules that will enable novel searches for new physics beyond the standard model of particle physics.
  • Professor Sir Andre Geim, who isolated graphene in 2004 with Professor Sir Konstantin Novoselov, to explore 2D materials and their van der Waals assemblies.
  • , to lead work into chemically fuelled molecular ratchets. Ratcheting underpins the mechanisms of molecular machinery, gives chemical processes direction, and helps explain how chemistry becomes biology.
  • , in the Department of Chemistry and  Swagֱ Institute of Biotechnology, to develop enzymatic methods for peptide synthesis (EZYPEP). Peptides are fundamental in life and are widely used as therapeutic agents, vaccines, biomaterials and in many other applications. Currently peptides are produced by chemical synthesis, which is inefficient, expensive, difficult to scale-up and creates a huge amount of harmful waste that is damaging to the environment. EZYPEP will address this problem by developing enzymatic methods for the more sustainable, cleaner and scalable synthesis of peptides, including essential medicines to combat infectious diseases, cancer and diabetes.
  •  , based in the Department of Physics and Astronomy, to explore Top and Higgs Couplings and extended Higgs Sectors with rare multi-Top multi-Higgs Events with the ATLAS detector at the LHC. This project aims at deeper insight into the most fundamental properties of nature beyond our current understanding.

Swagֱ received seven of the 42 grants awarded to UK institutions.

The grant recipients will join a community of just 255 awarded ERC advanced grants, from a total of 1,829 submissions.

As a result of today’s announcement, the ERC will be investing nearly €652 million across the 255 projects.

Head of Department for Physics and Astronomy, which received three of the seven grants, said: “Today’s triple award reflects our department’s continued leadership in pioneering research. We’re home to Jodrell Bank, host of the Square Kilometre Array Observatory – set to be the largest radio telescope in the world; the National Graphene Institute – a world-leading centre for 2D material research with the largest clean rooms in European academia; we lead experiments at CERN and Fermilab; and – crucially – we host a world-leading community of vibrant and collaborative researchers like Professors Flanagan, Geim and Peters who lead the way. Today’s announcement recognises their role as outstanding research leaders who will drive the next generation to deliver transformative breakthroughs.”

, Vice-Dean for Research and Innovation in the Faculty of Science and Engineering at Swagֱ, added: “Our University’s history of scientific and engineering research is internationally recognised but it does not constrain us. Instead, it’s the work of our researchers – like the seven leaders celebrated today – and what they decide to do next, that will define us.  We are proud to have a culture where responsible risk-taking is nurtured and transformative outcomes delivered, and we look forward to these colleagues using this environment to deliver world-leading and world-changing research.”

, Vice-Dean for Research and Innovation in the Faculty of Biology, Medicine and Health, said: "These awards are welcome recognition of the world-leading and transformative frontier science that Swagֱ researchers are delivering. The compelling and innovative research supported by these ERC awards builds on the excellent local environment at Swagֱ and are cornerstones of the University’s strategy for excellence and leadership in research and innovation. The positive and real-world global impact from these research awards could deliver are genuinely tangible.

"As we enter our third century, the awards made in a highly competitive environment, are evidence that we do so with a continued pioneering approach to discovery and the pursuit of knowledge that our research community was built on."

Iliana Ivanova, Commissioner for Innovation, Research, Culture, Education and Youth at the ERC, said: “This investment nurtures the next generation of brilliant minds. I look forward to seeing the resulting breakthroughs and fresh advancements in the years ahead.”

The ERC grants are part of the EU’s Horizon Europe programme.

]]>
Thu, 11 Apr 2024 12:21:32 +0100 https://content.presspage.com/uploads/1369/d2abb645-982a-4ccd-af20-ee80b8012669/500_logo-erc-flag-fp.png?10000 https://content.presspage.com/uploads/1369/d2abb645-982a-4ccd-af20-ee80b8012669/logo-erc-flag-fp.png?10000
First human trial shows ‘wonder’ material can be developed safely /about/news/first-human-trial-shows-wonder-material-can-be-developed-safely/ /about/news/first-human-trial-shows-wonder-material-can-be-developed-safely/621022A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests.

]]>
A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests.

Carefully controlled inhalation of a specific type of – the world’s thinnest, super strong and super flexible material – has no short-term adverse effects on lung or cardiovascular function, the study shows.

The first controlled exposure clinical trial in people was carried out using thin, ultra-pure graphene oxide – a water-compatible form of the material.

Researchers say further work is needed to find out whether higher doses of this graphene oxide material or other forms of graphene would have a different effect.

The team is also keen to establish whether longer exposure to the material, which is thousands of times thinner than a human hair, would carry additional health risks.

There has been a surge of interest in developing graphene – at Swagֱ in 2004 and which has been hailed as a ‘wonder’ material. Possible applications include electronics, phone screens, clothing, paints and water purification.

Graphene is actively being explored around the world to assist with targeted therapeutics against cancer and other health conditions, and also in the form of implantable devices and sensors. Before medical use, however, all nanomaterials need to be tested for any potential adverse effects.

Researchers from the Universities of Edinburgh and Swagֱ recruited 14 volunteers to take part in the study under carefully controlled exposure and clinical monitoring conditions.

The volunteers breathed the material through a face mask for two hours while cycling in a purpose-designed mobile exposure chamber brought to Edinburgh from the National Public Health Institute in the Netherlands.

Effects on lung function, blood pressure, blood clotting and inflammation in the blood were measured – before the exposure and at two-hour intervals. A few weeks later, the volunteers were asked to return to the clinic for repeated controlled exposures to a different size of graphene oxide, or clean air for comparison.

There were no adverse effects on lung function, blood pressure or the majority of other biological parameters looked at.

Researchers noticed a slight suggestion that inhalation of the material may influence the way the blood clots, but they stress this effect was very small.

Dr Mark Miller, of the University of Edinburgh’s Centre for Cardiovascular Science, said: “Nanomaterials such as graphene hold such great promise, but we must ensure they are manufactured in a way that is safe before they can be used more widely in our lives.

“Being able to explore the safety of this unique material in human volunteers is a huge step forward in our understanding of how graphene could affect the body. With careful design we can safely make the most of nanotechnology.”

Professor Kostas Kostarelos, of Swagֱ and the Catalan Institute of Nanoscience and Nanotechnology (ICN2) in Barcelona, said: “This is the first-ever controlled study involving healthy people to demonstrate that very pure forms of graphene oxide – of a specific size distribution and surface character – can be further developed in a way that would minimise the risk to human health.

has taken us more than 10 years to develop the knowledge to carry out this research, from a materials and biological science point of view, but also from the clinical capacity to carry out such controlled studies safely by assembling some of the world’s leading experts in this field.”

Professor Bryan Williams, Chief Scientific and Medical Officer at the British Heart Foundation, said: “The discovery that this type of graphene can be developed safely, with minimal short term side effects, could open the door to the development of new devices, treatment innovations and monitoring techniques.

“We look forward to seeing larger studies over a longer timeframe to better understand how we can safely use nanomaterials like graphene to make leaps in delivering lifesaving drugs to patients.”

The study is published in the journal Nature Nanotechnology: .It was funded by the British Heart Foundation and the UKRI EPSRC.

]]>
Fri, 16 Feb 2024 10:07:35 +0000 https://content.presspage.com/uploads/1369/500_v9.jpg?59331 https://content.presspage.com/uploads/1369/v9.jpg?59331
Mimicking the Brain: Long-Term Memory and Synapse-Like Dynamics in 2D Nanofluidic Channels /about/news/mimicking-the-brain-long-term-memory-and-synapse-like-dynamics-in-2d-nanofluidic-channels/ /about/news/mimicking-the-brain-long-term-memory-and-synapse-like-dynamics-in-2d-nanofluidic-channels/617696Research by Swagֱ’s Angstrofluidics Group is exploring new perspectives in nanofluidics by pushing the boundaries of nanofabrication with angstrom-scale two-dimensional channels.

]]>
Key highlights

  • Tiny channels of nanometer scale (1 nanometer = 1/billionth of a meter) are found in nature that allow substances to pass through and filter out impurities. These are present in human cell linings and in the neurons in brain. Scientists have only recently begun to understand the importance of these channels. Creating these structures artificially could be useful for many things, such as testing medicines, delivering drugs, and filtering water.
  • Nanofluidics is the study of the transport of fluids that are confined to structures of nanometer length scale. Swagֱ’s  investigates nanocapillaries’ design and fabrication. The first paper that described the fabrication of the angstrom scale 2D channels was co-led by Prof Sir Andre Geim and Prof Radha Boya.
  • The brain uses ions, chemicals and water to make its calculations and store 'memory' whereas artificial computers use electrons in their operation.  The emerging field of nanofluidic computing, also called ionic computing, raises the possibility of devices that operate similarly to the human brain.
     

The link between nanofluidics and computing

Imagine a computer that runs like our brains, consuming minimal energy and seamlessly processing information. That's the promise of nanofluidic computing, a radical departure from conventional computing architectures. Instead of relying on rigid binary systems, nanofluidics harness the flow of ions in fluids, mimicking the brain's efficiency and adaptability. This innovative approach could lead to computers that are not only more energy-efficient but also capable of handling complex tasks with ease.

Swagֱ researcher, Professor Radha Boya, is trying to mimic the behaviour of neuronal learning mechanisms using ions in water. Her research investigates utilising Ångstrom-scale (that is, one ten-billionth, or 0.1 nanometre) designer capillaries for molecular transport, ion sieving and sensing, energy harvesting and neuromorphic ion memory applications.

Building nanocapillaries

The team’s latest research involves the design and fabrication of capillary devices with atomically thin 2D materials assembled as 2D heterostructures. The capillaries are layer-by-layer structures of 2D materials such as graphene, with cavities running through the middle of the stack. To put it simply – this is the fabrication of atomic-scale channels with atomically smooth walls.

The 2D channel is created by the absence of 2D material, hence is a 2D-empty space. They can be fabricated on any relatively flat substrate and with the flexibility to choose any combination of 2D material walls ranging from hydrophilic to hydrophobic or insulating to conducting. Such customisation allows to exploration of anomalous or quantum properties of ultra-confined flows at ambient conditions and validates century-old theories.

This novel architecture of capillaries provides atomic scale tunability of dimensions and atomically smooth walls. Despite the Ångstrom (Å) scale, this is essentially a top-down lithographic technique which ensures its high reproducibility and flexibility.

The future of nanocapillaries and nanofluidic computing

Professor Boya’s team of physics and chemistry researchers investigates novel properties of materials in confinements, the aforementioned capillaries, at the limits of molecular sizes for unravelling their emergent physical and chemical properties. The group is exploring new perspectives in nanofluidics by pushing the boundaries of nanofabrication with angstrom-scale two-dimensional channels.

These devices are now a step closer to ‘nanofluidic computing’. Memory achieved using simple salt solutions in water is an exciting prospect hinting at the possibility of devices that operate similarly to the human brain.

Making  a difference: the impact of research

Membrane-based applications with nanoscale channels, such as osmotic power generation, desalination, and molecular separation would benefit from understanding the mechanisms of sieving, ways to decrease fluidic friction, and increasing the overall efficiency of the process.

However, mechanisms that allow fast flows are not fully understood yet. Professor Radha’s work on angstrom-capillaries that are only few atoms thick, opens an avenue to investigate fundamental sieving mechanisms behind important applications such as filtration, separation of ions, molecules and gases, desalination, and fuel gas separation from refinery off-gases.

About Professor Radha Boya

 is Royal Society University Research and Kathleen Ollerenshaw fellow at the University of Swagֱ (UoM), where she is exploring the fundamentals and applications of atomic scale nanocapillaries. She has been funded through a series of highly competitive and prestigious international fellowships, including Indo-US pre- and postdoctoral, as well as European Union's Marie Sklodowska-Curie and Leverhulme early career fellowships. Radha was named as UNESCO L’Oréal-women in science fellow, and was recognized as an inventor of MIT Technology Review's "Innovators under 35" list, RSC Marlow award, Philip Leverhulme Prize, and Analytical Chemistry Young Innovator Award and is an ERC starting grant awardee.

Recent relevant papers :

To discuss this research further contact Professor Radha Boya.

Discover how to access our world-leading research and state-of-the-art equipment. Visit our to find out about the National Graphene Institute and our other world-leading facilities. 
 

]]>
Wed, 31 Jan 2024 14:17:43 +0000 https://content.presspage.com/uploads/1369/500_toc-19jan23-rboya.jpg?10000 https://content.presspage.com/uploads/1369/toc-19jan23-rboya.jpg?10000
Harnessing energy stored in water from raindrops /about/news/harnessing-energy-stored-in-water-from-raindrops/ /about/news/harnessing-energy-stored-in-water-from-raindrops/613622Harnessing energy stored in water from raindrops: using nanocapillaries to understand the fundamental structure and behaviour of water

]]>
Using nanocapillaries to understand the fundamental structure and behaviour of water

  • Water is everywhere. It’s essential to all life forms, so is ubiquitous. 
  • It also carries enormous energy. 70% of solar radiation that reaches the surface of earth gets absorbed by water. This energy circulates with water around the globe and transfers into other forms of energy. 
  • But most of the energy – for example, osmotic energy, stored in water is not exploited yet. Imagine if we could harness energy stored in water? 
  • In Swagֱ – a city known for its rain – research led by Dr Qian Yang explores the fundamental questions around the structure and behaviour of water at the molecular level. 
  • Using nanocapillaries made from graphene she is progressing underpinning research that could lead to the development of a brand-new form of renewable energy that could revolutionise sustainable living. 

The potential of water as a source of energy is vast. Hydroelectric power plants, for example, have been explored in large scale to harvest the kinetic energy of water, yet this technology causes significant changes to the local ecosystem. Which means, we still can’t harness the enormous amount of energy stored in water. As a result, this endless energy resource is largely untapped. 

The water-solid interface is the key to harnessing energy toward more efficient water-energy nexus. This requires better understanding of the interfacial water structures and their interactive properties. So far, this progress has been hampered largely because lack of understanding of water at the nanoscale. As a general rule of thumb, structure determines properties and therefore the best applications. Therefore, our first priority is to figure out the structure of nanoscale water. But how do we do it? 

Nanocapillary confinement: analysing water molecules at atomic level 
The answer is using nanocapillary confinement, a tool first identified by Sir Professor Andre Geim in 2016, and now the focus of Dr Qian Yang’s research. 

Using a 2D material capillary, Dr Yang is able to confine a single layer of water molecules. This enables Dr Yang’s team to start to detect the structure of water, and determine its properties, advancing our understanding of key fundamental questions such as how water molecules arrange themselves and transport, and how it responds to light and behaves under electric fields. This will further enable single molecular detection which is essential for many chemical and biological applications. 

Understanding the unique interaction between water and graphene 
In parallel, she is also exploring the unique interactions between water and graphene at the water-graphene interface. Graphene carries charges; and the charges interact with the ions in water solutions at the interfacial area. This means if you pour water through graphene surface, and attach electrodes alongside, you can generate electricity. Through her research, Dr Yang is determining how to make this process work more efficiently, in order to design the materials that best harvest flow induced electricity – either from rain droplets or water flow in a river. 

Leveraging the Swagֱ’s expertise, equipment and connections 
While researchers across the world are undertaking similar fundamental analysis, Dr Yang’s research has an advantage. The nanocapillary devices conceptualized by Professor Geim and housed in Swagֱ is extremely sophisticated, enabling atomic confinement that’s proving difficult for other institutions to replicate. Alongside, to accelerate discovery Dr Yang has access to: the National Graphene Institute, the biggest academic cleanroom facility in Europe; the expertise of Swagֱ’s graphene community, the highest-density research and innovation community in the world; and a network of international collaborations. 

Leading discovery 
As a result of this capabilities, her team’s discoveries include capillary condensation under atomic scale confinement. For example, using a van der Waals assembly of two-dimensional crystals to create atomic-scale capillaries – less than four ångströms in height and can accommodate just a monolayer of water – Dr Yang has proven that the century-old Kelvin equation stands, rather than breaks down as expected. Dr Yang shows that this can be attributed to elastic deformation of capillary walls, which suppresses the giant oscillatory behaviour expected from the commensurability between the atomic-scale capillaries and water molecules. This finding provides a basis for an improved understanding of capillary effects at the smallest scale possible, which is important in many real world situations. For instance, for estimating the oil reserve worldwide. Her work also helps us to have better understanding of sandcastles, which are also hold tightly together by capillary force. 

Further to this, she has also explored ionic transport inside two-dimensional nanocapillaries to understand the mass transport and charge transfer process, for potential deionization and water purification applications. Overall, using combined nanocapillary devices with microfluidics system, together with precise electrical measurements, she examines: (i) capillary condensation inside nanocavities and modulated ionic transport; (ii) electricity generation induced by liquid flow through graphene surface; (iii) nanoconfined water structure and their properties. 

The future of energy harvesting 
Dr Yang’s work explores new physics and phenomena arise inside nanocapillaries, aiming at both better fundamental understanding of water at the atomic scale and working principles for designing more efficient energy harvesting devices at scale. 

By taking the research down to the atomic scale, she is progressing global understanding, and often confounding expectations – as in the case with the Kelvin equation. 

Her research will enable technologies in a wide range of fields, including single molecular sensing, medical diagnostics and energy harvesting. 
 

Dr Qian Yang 
is a Royal Society University Research Fellow and Dame Kathleen Ollerenshaw Fellow at the Department of Physics and Astronomy. Her research explores the mass transport in 2D nanocapillaries enabled by van der Waals technology, molecular properties under spatial confinement, nanofluidics and electrokinetic phenomena at the water-graphene interface. She is also the recipient of the Leverhulme Early Career Fellowship in 2019, Royal Society University Research Fellowship and the European Research Council Starting Grant. 

Recent relevant papers 

  •  
  •  

To discuss this research further contact Dr Qian Yang.

Discover how to access our world-leading research and state-of-the-art equipment. Visit our to find out about the National Graphene Institute and our other world-leading facilities. 
 

]]>
Mon, 11 Dec 2023 15:16:51 +0000 https://content.presspage.com/uploads/1369/f6fc940c-f5b2-4684-904c-61986d312d1d/500_raindrops1000x1000.jpg?10000 https://content.presspage.com/uploads/1369/f6fc940c-f5b2-4684-904c-61986d312d1d/raindrops1000x1000.jpg?10000
Swagֱ scientists caught Hofstadter’s butterfly in one of the most ancient materials on Earth /about/news/manchester-scientists-caught-hofstadters-butterfly-in-one-of-the-most-ancient-materials-on-earth/ /about/news/manchester-scientists-caught-hofstadters-butterfly-in-one-of-the-most-ancient-materials-on-earth/581833A team of researchers from Swagֱhave revisited in a study published in one of the most ancient materials on Earth – graphite, and discovered new physics that has eluded the field for decades.

]]>
Researchers in the at The University of Swagֱ have revisited one of the most ancient materials on Earth – graphite, and discovered new physics that has eluded the field for decades.

Despite being made entirely of layers of carbon atoms arranged in a honeycomb pattern, natural graphite is not as simple as one may think. The manner in which these atomic layers stack on top of one another can result in different types of graphite, characterised by different stacking order of consecutive atomic planes.   The majority of naturally appearing graphite has hexagonal stacking, making it one of the most “ordinary” materials on Earth. The structure of graphite crystal is a repetitive pattern. This pattern gets disrupted at the surface of the crystal and leads to what's called 'surface states', which are like waves that slowly fade away as you go deeper into the crystal. But how surface states can be tuned in graphite, was not well understood yet.

Van der Waals technology and twistronics (stacking two 2D crystals at a twist angle to tune the properties of the resulting structure to a great extent, because of moiré pattern formed at their interface) are the two leading fields in 2D materials research. Now, the team of NGI researchers, led by Prof. Artem Mishchenko, employs moiré pattern to tune the surface states of graphite, reminiscent of a kaleidoscope with everchanging pictures as one rotates the lens, revealing the extraordinary new physics behind graphite.

In particular, Prof. Mishchenko expanded twistronics technique to three-dimensional graphite and found that moiré potential does not just modify the surface states of graphite, but also affects the electronic spectrum of the entire bulk of graphite crystal. Much like the well-known story of The Princess and The Pea, the princess felt the pea right through the twenty mattresses and the twenty eider-down beds. In the case of graphite, the moiré potential at an aligned interface could penetrate through more than 40 atomic graphitic layers.

This research, published in the latest issue of , studied the effects of moiré patterns in bulk hexagonal graphite generated by crystallographic alignment with hexagonal boron nitride. The most fascinating result is the observation of a 2.5-dimensional mixing of the surface and bulk states in graphite, which manifests itself in a new type of fractal quantum Hall effect – a 2.5D Hofstadter’s butterfly.

Prof. Artem Mishchenko at Swagֱ, who has already discovered the said: “Graphite gave rise to the celebrated graphene, but people normally are not interested in this ‘old’ material. And now, even with our accumulated knowledge on graphite of different stacking and alignment orders in the past years, we still found graphite a very attractive system – so much yet to be explored”. Ciaran Mullan, one of the leading authors of the paper, added: “Our work opens up new possibilities for controlling electronic properties by twistronics not only in 2D but also in 3D materials”.

Prof. Vladimir Fal’ko, Director of the National Graphene Institute and theoretical physicist at the Department of Physics and Astronomy, added: “The unusual 2.5D quantum Hall effect in graphite arises as the interplay between two quantum physics textbook phenomena – Landau quantisation in strong magnetic fields and quantum confinement, leading to yet another new type of quantum effect”.

The same team is now carrying on with the graphite research to gain a better understanding of this surprisingly interesting material.

 

Image credit: Prof. Jun Yin (co-author of the paper) 

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

]]>
Thu, 20 Jul 2023 12:24:28 +0100 https://content.presspage.com/uploads/1369/ee78b64d-450a-47dc-93a2-6983e93ccd56/500_graphitebutterfly.jpg?10000 https://content.presspage.com/uploads/1369/ee78b64d-450a-47dc-93a2-6983e93ccd56/graphitebutterfly.jpg?10000
Experiments reveal water can "talk" to electrons in graphene /about/news/experiments-reveal-water-can-talk-to-electrons-in-graphene/ /about/news/experiments-reveal-water-can-talk-to-electrons-in-graphene/578618An international team of researchers from Swagֱ, the Max Planck Institute for Polymer Research of Mainz (Germany), and the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain), reports in a study published in that water can interact directly with the carbon’s electrons: a quantum phenomenon that is very unusual in fluid dynamics.

]]>
 For the last 20 years, scientists have been puzzled by how water behaves near carbon surfaces. It may flow much faster than expected from conventional flow theories or form strange arrangements such as square ice. Now, an international team of researchers from Swagֱ, the Max Planck Institute for Polymer Research of Mainz (Germany), and the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain), reports in a study published recently in that water can interact directly with the carbon’s electrons: a quantum phenomenon that is very unusual in fluid dynamics. The results of this research could lead to applications in water purification and desalination processes and maybe even to liquid-based computers. 

A liquid, such as water, is made up of small molecules that randomly move and constantly collide with each other. A solid, in contrast, is made of neatly arranged atoms that bathe in a cloud of electrons. The solid and the liquid worlds are assumed to interact only through collisions of the liquid molecules with the solid’s atoms: the liquid molecules do not “see” the solid’s electrons. Nevertheless, just over a year ago, a paradigm-shifting theoretical study proposed that at the water-carbon interface, the liquid’s molecules and the solid’s electrons push and pull on each other, slowing down the liquid flow: this new effect was called quantum friction. However, the theoretical proposal lacked experimental verification. 

“We have now used lasers to see quantum friction at work,” explains study lead author Dr Nikita Kavokine. The team studied a sample of – a single monolayer of carbon atoms arranged in a honeycomb pattern. They used ultrashort red laser pulses (with a duration of only a millionth of a billionth of a second) to instantaneously heat up the graphene’s electron cloud. They then monitored its cooling with terahertz laser pulses, which are sensitive to the temperature of the graphene electrons. This technique is called optical pump–terahertz probe (OPTP) spectroscopy. 

To their surprise, the electron cloud cooled faster when the graphene was immersed in water while immersing the graphene in ethanol made no difference to the cooling rate. “This was yet another indication that the water-carbon couple is somehow special, but we still had to understand what exactly was going on,” Kavokine says. A possible explanation was that the hot electrons push and pull on the water molecules to release some of their heat: in other words, they cool through quantum friction. The researchers delved into the theory, and indeed: water-graphene quantum friction could explain the experimental data. 

"It's fascinating to see that the carrier dynamics of graphene keep surprising us with unexpected mechanisms, this time involving solid-liquid interactions with molecules none other than the omnipresent water," comments Prof Klaas-Jan Tielrooij. What makes water special here is that its vibrations, called hydrons, are in sync with the vibrations of the graphene electrons, called plasmons, so that the graphene-water heat transfer is enhanced through an effect known as resonance. is impressive that quantum phenomena usually occurring in solids appear in what would be considered a classical liquid as water” adds , Senior Lecturer at the University of Swagֱ. 

The experiments thus confirm the basic mechanism of solid-liquid quantum friction. This will have implications for filtration and desalination processes, in which quantum friction could be used to tune the permeation properties of the nanoporous membranes. “Our findings are not only interesting for physicists, but they also hold potential implications for electrocatalysis and photocatalysis at the solid-liquid interface," says Xiaoqing Yu, PhD student at the Max Planck Institute in Mainz and first author of the work. 

The discovery was down to bringing together an experimental system, a measurement tool and a theoretical framework that seldom go hand in hand. The key challenge is now to gain control over the water-electron interaction. “Our goal is to be able to switch quantum friction on and off on demand,” Kavokine says. “This way, we could design smarter water filtration processes, or perhaps even fluid-based computers.” 

 

Pictured above: Water-graphene quantum friction (Credits: Lucy Reading-Ikkanda / Simons Foundation) 

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

]]>
Mon, 26 Jun 2023 10:53:27 +0100 https://content.presspage.com/uploads/1369/6333e2a0-fdb0-4737-9406-fb6a7d383443/500_quantumfriction.jpg?10000 https://content.presspage.com/uploads/1369/6333e2a0-fdb0-4737-9406-fb6a7d383443/quantumfriction.jpg?10000
A University spin-out fuelling the battery revolution in the UK /about/news/a-university-spin-out-fuelling-the-battery-revolution-in-the-uk/ /about/news/a-university-spin-out-fuelling-the-battery-revolution-in-the-uk/574480For the first time in the UK, scientists have been able to recover commercial grade lithium carbonate and graphite from black mass; a solid black powder containing a complex mixture of metals and impurities recovered from recycling end-of-life lithium-ion batteries. The UK-first is a major step forward for sustainability in battery technology.

]]>
For the first time in the UK, scientists have been able to recover commercial grade lithium carbonate and graphite from black mass; a solid black powder containing a complex mixture of metals and impurities recovered from recycling end-of-life lithium-ion batteries. The UK-first is a major step forward for sustainability in battery technology.

, founded by University of Swagֱ alumnus, , has recovered commercial grade lithium carbonate and graphite from black mass; a solid black powder containing a complex mixture of metals and impurities recovered from the recycling of end-of-life lithium-ion batteries.

Conducted in partnership with globally renowned precious metal recovery specialists, , and with access to Graphene Engineering Innovation Centre's (GEIC) world-leading capabilities and the support of its expert facilities team, the test work on 1 kg of black mass validates the Watercycle’s ground-breaking technology. It underpins the major contribution that deep tech university spin outs are playing in championing the UK’s ambitions for the energy transition and the attainment of a circular economy.

WaterCycle Technologies Ltd. are a Tier 2 partner of the GEIC, the University’s world-class, multi-million-pound engineering centre which provides industry-led development in graphene applications, bringing real-world products to market.

Watercycle CEO Dr Seb Leaper said, “To most people it is not obvious that one of the main barriers to achieving Net Zero is the availability of critical minerals like lithium. But we must ensure that the means of accessing these minerals is environmentally responsible. This requires sustainable primary production and efficient recycling technology, which is what we are creating at Watercycle. We are proud to be a University of Swagֱ spinout and are proud to be working with two fantastic northern companies in RSBruce and Weardale Lithium who are making the UK’s domestic lithium supply chain possible.” 

This breakthrough marks the first step forward in commercialising Watercycle’s technology.

James Baker, CEO of Graphene@Swagֱ, said: “The Graphene Engineering Innovation Centre provides partners within the rapid development and scale-up of R&D, the support to bring real world products to market. In particular, the gives companies like Watercycle Technologies the opportunity to bring innovation and research into the tough world of commercialisation, and to amplify prototypes through the conduction of leading edge benchtop experiments.

“By supporting partners in this way, we can also support Swagֱ’s regional and national competitiveness, in turn attracting world-class businesses and high-quality jobs to the companies we’re helping to commercialise.”

in collaboration with RSBruce, demonstrating the significant opportunity to recover value-added products from Black Mass processing using Watercycle’s system and both companies are now in the process of finalising a developed pilot plan.

Corresponding to this phenomenal achievement, the team have found success in producing lithium carbonate from another source, establishing a step further to supporting UK’s ambitions to produce a domestic supply of lithium to power the domestic energy transition, and the UK Government’s goals of achieving net zero.

At its laboratory in the GEIC, the company applied its proprietary Direct Lithium Extraction & Crystallisation process (DLEC™) to successfully produce lithium carbonate crystals from brines, extracted from Weardale Lithium Limited’s existing geothermal boreholes at Eastgate, in County Durham. 

.

]]>
Fri, 19 May 2023 14:20:02 +0100 https://content.presspage.com/uploads/1369/6296d018-fb7f-4a4d-804d-2015ac77309a/500_ceoofweardalelithiumanddrsepleaper.jpg?10000 https://content.presspage.com/uploads/1369/6296d018-fb7f-4a4d-804d-2015ac77309a/ceoofweardalelithiumanddrsepleaper.jpg?10000
Intelligent membranes with memories make next-generation smart filters /about/news/intelligent-membranes-with-memories-make-next-generation-smart-filters/ /about/news/intelligent-membranes-with-memories-make-next-generation-smart-filters/570223Researchers from the National Graphene Institute (NGI) have made 'intelligent' membranes whose 'memory' can be used in areas like smart separation technology, wound management, drug delivery, sensors and memory devices.

]]>
Researchers from the National Graphene Institute (NGI) have made 'intelligent' membranes whose 'memory' can be used in areas like smart separation technology, wound management, drug delivery, sensors and memory devices.

"The history of membrane development spans more than 100 years and has led to a revolution in industrial separation processes," says Professor Rahul Raveendran Nair, Carlsberg/Royal Academy of Engineering Research Chair and study team leader. "In recent years, there has been some effort towards making membranes that mimic biological structures, particularly their ‘intelligent’ characteristics."

Now, in research published today in , scientists explain how they have developed intelligent membranes that can alter their properties depending on the environment and remember how permeable they were before. This means the membranes can adapt to different conditions in their environment and, more importantly, memorise their state, a feature which can be exploited in many different applications.

 A phenomenon known as hysteresis is the most common expression of memory or intelligence in a material. It refers to the situation where a system's current properties are dependent and related to its previous state. Hysteresis is commonly observed in magnetic materials. For example, a magnet may have more than one possible magnetic moment in each magnetic field depending on the field the magnet was subjected to in the past. Hysteresis is rarely seen, however, in molecular transport through artificial membranes.

"Coming up with simple and effective clean water solutions is one of our greatest global challenges. This study shows that fundamental molecular level insights and nanoscale materials offer great potential for the development of 'smart' membranes for water purification and other applications," said Professor Angelos Michaelides of the University of Cambridge.

In this work, the Swagֱ team in collaboration with scientists from University of Cambridge, Xiamen University, Dalian University of Technology, University of York, and National University of Singapore has developed intelligent membranes based on MoS2 (a two-dimensional material called molybdenum disulphide) that can remember how permeable they were before. The researchers have shown that the way ions and water infiltrate the membranes can be regulated by controlling the external pH.

The membranes mimic the function of biological cell membranes and display hysteretic ion and water transport behaviour in response to the pH, which means they remember what pH they were exposed to before. “The memory effects we have seen are unique to these membranes and have never been observed before in any inorganic membranes,” said co-first author Dr Amritroop Achari of the University of Swagֱ.

The researchers demonstrated that the biomimetic effect could be used to improve autonomous wound infection sensing. To do this, they placed the membranes in artificial wound exudate, which simulates the liquid produced by wounds, and subjected them to changes in pH. The membranes only allowed permeation of the wound exudate at pH levels relevant to an infected wound, thus allowing them to be used as sensors for infection detection. The researchers say the new membranes can also be used in a host of other pH-dependent applications, from nanofiltration to mimicking the function of neuronal cells.

Co-author Professor Kostya Novoselov, Langworthy Professor in the School of Physics and Astronomy at the University of Swagֱ and a professor at the Centre for Advanced 2D Materials, National University of Singapore said, “The uniqueness in this membrane is that its hysteretic pH response can be seen as a memory function, which opens a lot of interesting avenues for the creation of smart membranes and other structures. Research in this direction can play a pivotal role in the design of intelligent technologies for tomorrow.”

 

Pictured above: Artist's view of intelligent membranes with memory effects, courtesy R.Nair

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

]]>
Wed, 19 Apr 2023 17:36:01 +0100 https://content.presspage.com/uploads/1369/38ba53a8-5723-4f37-9d39-5ddb51fe7307/500_16-9.jpg?10000 https://content.presspage.com/uploads/1369/38ba53a8-5723-4f37-9d39-5ddb51fe7307/16-9.jpg?10000
Wonder material graphene claims yet another superlative /about/news/wonder-material-graphene-claims-yet-another-superlative/ /about/news/wonder-material-graphene-claims-yet-another-superlative/569386In a paper published in Nature this week (13 Apr 2023), researchers from Swagֱ report record-high magnetoresistance that appears in graphene under ambient conditions.

]]>
In a paper published in  this week (13 Apr 2023), researchers from Swagֱ report record-high magnetoresistance that appears in under ambient conditions.

Materials that strongly change their resistivity under magnetic fields are highly sought for various applications and, for example, every car and every computer contain many tiny magnetic sensors. Such materials are rare, and most metals and semiconductors change their electrical resistivity only by a tiny fraction of a percent at room temperature and in practically viable magnetic fields (typically, by less than a millionth of 1 %). To observe a strong magnetoresistance response, researchers usually cool materials to liquid-helium temperatures so that electrons inside scatter less and can follow cyclotron trajectories.  

Now a research team led by Professor Sir Andre Geim has found that good old graphene that seemed to be studied in every detail over the last two decade exhibits a remarkably strong response, reaching above 100% in magnetic fields of standard permanent magnets (of about 1,000 Gauss). This is a record magnetoresistivity among all the known materials.

Speaking about this latest graphene discovery, Sir Andre Geim said: “People working on graphene like myself always felt that this gold mine of physics should have been exhausted long ago. The material continuously proves us wrong finding yet another incarnation. Today I have to admit again that graphene is dead, long live graphene.”

To achieve this, the researchers used high-quality graphene and tuned it to its intrinsic, virgin state where there were only charge carriers excited by temperature. This created a plasma of fast-moving “Dirac fermions” that exhibited a surprisingly high mobility despite frequent scattering. Both high mobility and neutrality of this Dirac plasma are crucial components for the reported giant magnetoresistance.

“Over the last 10 years, electronic quality of graphene devices has improved dramatically, and everyone seems to focus on finding new phenomena at low, liquid-helium temperatures, ignoring what happens under ambient conditions. This is perhaps not so surprising because the cooler your sample the more interesting its behaviour usually becomes. We decided to turn the heat up and unexpectedly a whole wealth of unexpected phenomena turned up”, says Dr Alexey Berdyugin, the corresponding authors of the paper.

In addition to the record magnetoresistivity, the researchers have also found that, at elevated temperatures, neutral graphene becomes a so-called “strange metal”. This is the name given to materials where electron scattering becomes ultimately fast, being determined only by the Heisenberg uncertainty principle. The behaviour of strange metals is poorly understood and remains a mystery currently under investigation worldwide.

The Swagֱ work adds some more mystery to the field by showing that graphene exhibits a giant linear magnetoresistance in fields above a few Tesla, which is weakly temperature dependent. This high-field magnetoresistance is again record-breaking.

The phenomenon of linear magnetoresistance has remained an enigma for more than a century since it was first observed. The current Swagֱ work provides important clues about origins of the strange metal behaviour and of the linear magnetoresistance. Perhaps, the mysteries can now be finally solved thanks to graphene as it represents a clean, well-characterised and relatively simple electronic system.

“Undoped high-quality graphene at room temperature offers an opportunity to explore an entirely new regime that in principle could be discovered even a decade ago but somehow was overlooked by everyone. We plan to study this strange-metal regime and, surely, more of interesting results, phenomena and applications will follow”, adds Dr Leonid Ponomarenko, from Lancaster University and one of the leading Nature paper authors.

]]>
Wed, 12 Apr 2023 16:00:00 +0100 https://content.presspage.com/uploads/1369/500_graphene.jpeg?10000 https://content.presspage.com/uploads/1369/graphene.jpeg?10000
Swagֱ spin-out signs $1 billion game-changing deal to help tackle global sustainability challenges /about/news/manchester-spin-out-signs-1billion-game-changing-deal-to-help-tackle-global-sustainability-challenges/ /about/news/manchester-spin-out-signs-1billion-game-changing-deal-to-help-tackle-global-sustainability-challenges/569240A spin-out company from the graphene innovation ecosystem at Swagֱ has formed an international partnership that will spearhead an unprecedented scale-up of graphene-based technologies intended “to make a substantial impact on global CO2 𳾾DzԲ”.

]]>
A spin-out company from the innovation ecosystem at Swagֱ has formed an international partnership that will spearhead an unprecedented scale-up of graphene-based technologies intended “to make a substantial impact on global CO2 𳾾DzԲ”.     

UK-based Graphene Innovations Swagֱ Ltd (GIM), founded by University graduate Dr Vivek Koncherry, has signed a Memorandum of Understanding (MoU) with to create a new company in the UAE.

This exciting UK-UAE partnership - which highlights potential opportunity for UK innovators to access global investment and international markets and supply chains - will be one of the most ambitious projects to date to commercialise graphene as it fast-tracks cutting-edge R&D into large-scale manufacture – an investment vision worth a total of $1billion.

This new venture will develop and produce premium, environmentally-friendly products using advanced 2D materials, including breakthrough graphene-enhanced concrete that does not need cement or water and can be made using recycled materials.

Dr Vivek Koncherry, CEO of Graphene Innovations Swagֱ, based in Swagֱ’s (GEIC), said: "We are proud to be associated with Quazar so that we can assemble a powerful world-class team to provide us the opportunity to massively deploy our graphene-based technologies.”

Waleed Al Ali, CEO of Quazar, who will be active in helping bring the new company to successful, large-scale commercialisation, said: "The new graphene company will take a global lead in making environmentally friendly concrete and other products. We are glad that Quazar can play an active role in helping fulfil the UAE's His Highness Sheikh Saeed Bin Hamdan Bin Mohamed Al Nahyan's support for the UAE Vision 2030”.

James Baker, CEO of Graphene@Swagֱ, added: “This agreement with our GEIC partner Graphene Innovations Swagֱ and Quazar is a seminal moment for the commercialisation of graphene as it demonstrates huge confidence in the potential for this advanced material to help lead our transition into a net zero world.

is also a very proud moment for the Graphene@Swagֱ community as it confirms that our innovation ecosystem is providing exactly the right platform to nurture pioneering R&D into graphene and other 2D materials that is world-class.

“Swagֱ is known as the ‘home of graphene’ – but increasingly, it’s also being recognised as the home to its commercialisation potential. We are therefore able to form international partnerships, such as those in the UAE, based on this reputation; and from this position of strength we can place our city-region and the UK more generally into graphene’s global economy.

“As Greater Swagֱ further develops its innovation and manufacturing potential – all underpinned with the University’s leadership in advanced materials - this city-regional will have great opportunities with access to international supply chains, foreign investment and global markets.”       

As part of this ambition a new ‘Sustainable Materials Translational Research Centre’ is set to be created by the multi-million pound Greater Swagֱ Innovation Accelerator programme. The new centre is a partnership with the University’s, the, the High Value Manufacturing Catapult, and Rochdale Development Agency, and aims to connect local businesses to national opportunities, all underpinned with outstanding materials research.

The scheme is linked  to the zone and a said “… Swagֱ's expertise in material science” could potentially support a northern economic powerhouse.

Furthermore, the graphene innovation ecosystem at Swagֱ has recently been cited as an exemplar in attracting inward investment into the local regional economy – and therefore helping to boost the UK’s ‘levelling up’ agenda. The spotlight comes in a report entitled,   published by universities think-tank the Higher Education Policy Institute (HEPI).

A strategic partnerships that is highlighted is the ambitious agreement between the University and Abu Dhabi-based Khalifa University of Science and Technology which aims to deliver a funding boost for graphene innovation to develop new sustainable technologies. Attracting international funding to the North-West is also helping the UK government level-up R&D spending across the nation.

]]>
Tue, 11 Apr 2023 13:18:12 +0100 https://content.presspage.com/uploads/1369/eb4633a2-aad7-4159-ad47-74a272e22bb7/500_gim-quazarsigning.jpg?10000 https://content.presspage.com/uploads/1369/eb4633a2-aad7-4159-ad47-74a272e22bb7/gim-quazarsigning.jpg?10000
Professor Rahul Nair awarded Royal Academy of Engineering Research Chair /about/news/professor-rahul-nair-awarded-royal-academy-of-engineering-research-chair/ /about/news/professor-rahul-nair-awarded-royal-academy-of-engineering-research-chair/568439Professor Rahul Nair has been appointed as the Carlsberg/Royal Academy of Engineering Research Chair in Advanced Membranes for Sustainable Separation Technology.

]]>
Professor Rahul Nair has been appointed as the Carlsberg/Royal Academy of Engineering Research Chair in Advanced Membranes for Sustainable Separation Technology.

This prestigious five-year position is part of the Academy's Research Chair scheme, which promotes collaboration between academia and businesses to tackle engineering challenges. Prof. Nair is one of seven U. K. researchers awarded this position.

Professor Nair, of the and the , will partner with Carlsberg Group to develop next-generation membranes for filtration and separation technology specifically for the food and beverage sector. The project will explore how graphene and other 2D materials-based membranes can be used for more healthy, sustainable, and responsible plant-based food production.

Graphene and other two-dimensional materials offer unique advantages in separation and purification technology due to their ability to fabricate membranes with tunable pore sizes, controllable surface wetting functionalities, and fast water and solvent transport. Professor Nair's group is already collaborating with several leading industries to develop graphene-based membranes for water desalination, filtration, and oil separation. This partnership with Carlsberg aims to further expand this research direction into the food and beverage industries. 

Professor Nair said: “Adopting a more plant-based lifestyle can lower the impact of climate change by reducing greenhouse gas emissions and water usage. By investigating and applying novel membrane technology, the project will target the selective removal of sugars, alcohol and acids to obtain a more balanced plant-based diet. It will strengthen the general food sector by providing better plant-based food and beverage products.” 

“Carlsberg has a tradition of supporting creative ideas through collaborations and helping to overcome engineering challenges”, said Professor Nair. “The National Graphene Institute (NGI) at the University of Swagֱ is the world's largest academic space of its kind, solely dedicated to 2D materials research and covers the full scale of research from fundamentals to prototypes.” 

Dr. Birgitte Skadhauge, Vice President at Carlsberg Research Laboratory, said “this new partnership, enabled by a substantial donation from Carlsberg Foundation, will contribute to Carlsberg’s vision and commitment to sustainability, a healthier future, and zero carbon emission in all breweries by 2030 and in the value chain by 2040 via Carlsberg’s Together Towards ZERO and Beyond program.”

Dr. Arvid Garde, Director of Brewing Technology at Carlsberg Research Laboratory added “this research direction has the potential to significantly impact the food and beverage industry, as well as other industries that require advanced separation and purification technologies.

on each can be found on the Academy website.

]]>
Mon, 03 Apr 2023 10:30:00 +0100 https://content.presspage.com/uploads/1369/082d736d-7a79-488a-ad36-8ef12af2b4ec/500_mdt-0648.jpg?10000 https://content.presspage.com/uploads/1369/082d736d-7a79-488a-ad36-8ef12af2b4ec/mdt-0648.jpg?10000
Nanorippled graphene becomes a catalyst /about/news/nanorippled-graphene-becomes-a-catalyst/ /about/news/nanorippled-graphene-becomes-a-catalyst/564560A team of researchers led by Prof. Andre Geim from the National Graphene Institute (NGI) have discovered that nanoripples in graphene can make it a strong catalyst, contrary to general expectations that the carbon sheet is as chemically inert as the bulk graphite from which it is obtained.

]]>
A team of researchers led by Prof. Andre Geim from the National Graphene Institute (NGI) have discovered that nanoripples in graphene can make it a strong catalyst, contrary to general expectations that the carbon sheet is as chemically inert as the bulk graphite from which it is obtained.

in the Proceedings of the National Academy of Sciences (PNAS), the research has shown that graphene with nanoscale corrugations of its surface can accelerate hydrogen splitting as well as the best metallic-based catalysts. This unexpected effect is likely to be present in all two-dimensional materials, which are all inherently non-flat.

The Swagֱ team in collaboration with researchers from China and USA conducted a series of experiments to show that non-flatness of graphene makes it a strong catalyst. First, using ultrasensitive gas flow measurements and Raman spectroscopy, they demonstrated that graphene’s nanoscale corrugations were linked to its chemical reactivity with molecular hydrogen (H2) and that the activation energy for its dissociation into atomic hydrogen (H) was relatively small.

The team evaluated whether this reactivity is enough to make the material an efficient catalyst. To this end, the researchers used a mixture of hydrogen and deuterium (D2) gases and found that graphene indeed behaved as a powerful catalyst, converting H2 and D2 into HD. This was in stark contrast to the behaviour of graphite and other carbon-based materials under the same conditions. The gas analyses revealed that the amount of HD generated by monolayer graphene was approximately the same as for the known hydrogen catalysts, such as zirconia, magnesium oxide and copper, but graphene was required only in tiny quantities, less than 100 times of the latter catalysts.

“Our paper shows that freestanding graphene is quite different from both graphite and atomically flat graphene that are chemically extremely inert. We have also proved that nanoscale corrugations are more important for catalysis than the ‘usual suspects’ such as vacancies, edges and other defects on graphene’s surface” said Dr Pengzhan Sun, first author of the paper.

Lead author of the paper Prof. Geim added, “As nanorippling naturally occurs in all atomically thin crystals, because of thermal fluctuations and unavoidable local mechanical strain, other 2D materials may also show similarly enhanced reactivity. As for graphene, we can certainly expect it to be catalytically and chemically active in other reactions, not only those involving hydrogen.”

“2D materials are most often perceived as atomically flat sheets, and effects caused by unavoidable nanoscale corrugations have so far been overlooked. Our work shows that those effects can be dramatic, which has important implications for the use of 2D materials. For example, bulk molybdenum sulphide and other chalcogenides are often employed as 3D catalysts. Now we should wonder if they could be even more active in their 2D form”.

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

]]>
Tue, 14 Mar 2023 10:23:43 +0000 https://content.presspage.com/uploads/1369/8fa84cc2-a4b9-464f-8be1-adfba980b495/500_rippledgraphenewithdissociatedhydrogenatomsontop.jpg?10000 https://content.presspage.com/uploads/1369/8fa84cc2-a4b9-464f-8be1-adfba980b495/rippledgraphenewithdissociatedhydrogenatomsontop.jpg?10000
Aoife Taylor: from PhD to CEO /about/news/aoife-taylor-from-phd-to-ceo/ /about/news/aoife-taylor-from-phd-to-ceo/563893Three years ago Aoife was a PhD student in the Swagֱ Institute of Biotechnology, now she is the CEO of a STEM startup. We caught up with her to find out more about becoming a businesswoman.Biotechnology is one of Swagֱ’s research beacons – exemplars of interdisciplinary collaboration and cross-sector partnerships that lead to pioneering discoveries and improve the lives of people around the world. For more information, head to Swagֱ’s Biotechnology page.

]]>
When we last sat down with Aoife Taylor she told us about her experiences of being a woman in STEM, what it was like carrying out a PhD during the pandemic and how she tackled her impostor syndrome. Now she is the CEO of , a startup that has its roots in the MIB,  and that is producing a sustainable alternative to ceramic tiles. We thought it would be an good time to catch up with her and find out more about her new role.

Enna: Hi Aoife, nice to see you again, it’s been a while! And so much has changed since we last spoke. Can you tell me a bit about what you’re up to now?

Aoife: Sure! And yes, so much has changed. I’ve handed in my PhD thesis and I’m now working full time at DeakinBio as their CEO. It’s quite a nice change from before as I’m now on the business side of things rather than the science side.

E: Nice! So how did you make that transition from PhD to CEO? From scientist to businesswoman?

A: So weirdly it started with an art-science collaboration. I went along to a exhibition, really loved what they were doing and wanted to get involved. Aled was already working with them using his materials so I decided to join his team along with Sunny (artist) and Helen (scientist). We started to investigate adding chlorophyll because I was studying a chlorophyll pre-cursor as part of my PhD and I was making interesting hues of green and blue when synthesising it. So, we started experimenting with spinach! Eventually we got to algae which we found made the composite a really attractive colour. It also happened that the algae improved its strength too, so it had a practical application we weren’t expecting.

We thought about other additives that might improve the properties of the material and graphene was one of them. So, we entered the Eli Harari competition to see if this was an idea worth pursuing. We won the first prize (£50,000) and that really gave us the means to do some serious material investigation! After that we were able to secure a number of other grants and have been working at the under the Bridging the Gap scheme. Being at the GEIC is great because it's a start-up hub and everyone is happy to help each other out.

E: That’s amazing! What’s it like being on the business side of things rather than the science side?

A: I love it, it’s a really great opportunity to expand my horizons and after my PhD I was fed up with being in the lab. I’ve also found that I feel more confident in this role and setbacks don’t knock me like they used to. So, for example, when I was doing my PhD, it would really knock my confidence if I didn’t get the results I wanted and I hated presenting my work to people. But with this I’m happy to get up and show off what we’re doing and even if we get setbacks like not getting a grant, it doesn’t worry me as that’s just part and parcel of it isn’t it?

E: That’s great to hear! So, had you had any business training before taking on this role? Or has it been provided on the job?

A: I’d never had any formal training in terms of courses or anything like that, but I have taken part in quite a few competitions and events that are aimed at developing business skills in scientists. The University has actually been really great at providing those kinds of opportunities so obviously I took part in as many as I could find! One of the most helpful ones was BiotechYes, it’s a competition where you come up with an imaginary business, a product, and then put together a pitch deck and present it to the rest of the group. As you’re doing that you get support and feedback from businesspeople, it was a really useful learning experience. One of the things I learned that was particularly helpful was how to present a business case (asking for money), which is very different from how you’d present your research findings.

E: So, last time we talked we touched on your feelings of impostor syndrome. How do you manage that now? Is it better now that you’re in a role you feel comfortable in?

A: So, I definitely still have it, but I don’t struggle with it in the same way I did while I was doing my PhD. I find it much easier to rationalise the little problems and work my way through them rather than going into self-destruct mode. I’m also comforted by the fact that many start-up CEOs start with no experience, so I’m not alone on that front!

E: How do you find female representation now you’re on the business side of things? We spoke about this last time; do you think representation has got better?

A: All of our advisors are men and I don’t work directly with any female business leaders. There are women around but they’re always super busy, so I guess that impacts on their ability to offer mentorship. But I have been to some events where there have been women-led panels and there’s schemes for women where they take you through important business skills or topics. They’re all really helpful.

E: Do you find people interact with you differently because you’re a woman in a traditionally male-led field?

A: Yeah, I think sometimes. I am conscious though that most of the people we interact with on a business-front are men, potential investors, mentors and the like. I am interested to see if they’ll treat me differently because of my gender. But, so far, it hasn’t been a big problem which is nice! And actually, our team is evenly split, and the men in our team are very supportive so there’s no friction there.

E: And what do you think the future holds for you?

A: I’d love to see us grow and DeakinBIO turn into something great. Hopefully we’ll get some investors and we’ll be able to go to market. If not, then at least I’ve learned business skills, and I can look for similar opportunities elsewhere. But I really believe in our product and that we can do some good in the world. So I’m going to learn, practice, iterate and try my best to make this work!

]]>
Wed, 08 Mar 2023 10:47:15 +0000 https://content.presspage.com/uploads/1369/2abe6b4e-3bfc-4d26-a5fa-629070ebb1df/500_aoife-erb0390-erb.jpg?10000 https://content.presspage.com/uploads/1369/2abe6b4e-3bfc-4d26-a5fa-629070ebb1df/aoife-erb0390-erb.jpg?10000
Scientists develop graphene aerogel particles for efficient water purification /about/news/scientists-develop-graphene-aerogel-particles-for-efficient-water-purification/ /about/news/scientists-develop-graphene-aerogel-particles-for-efficient-water-purification/557853Writing in the , a team led by based in the (NGI) have produced 3-dimensional particles made of graphene, of many interesting shapes, using a variation of the vortex ring effect. The same effect is used to produce smoke rings and is responsible for keeping dandelion seeds flying. These particles have also been shown to be exceptionally efficient in adsorbing contaminants from water, thereby purifying it.

]]>
Writing in the , a team led by based in the (NGI) have produced 3-dimensional particles made of graphene, of many interesting shapes, using a variation of the vortex ring effect. The same effect is used to produce smoke rings and is responsible for keeping dandelion seeds flying. These particles have also been shown to be exceptionally efficient in adsorbing contaminants from water, thereby purifying it.Prof Aravind Vijayaraghavan

The researchers have shown that the formation of these graphene particles is governed by a complex interplay between different forces such as viscosity, surface tension, inertia and electrostatics. Prof Vijayaraghavan said: “We have undertaken a systematic study to understand and explain the influence of various parameters and forces involved in the particle formation. Then, by tailoring this process, we have developed very efficient particles for adsorptive purification of contaminants from water”.

Graphene oxide (GO), a functionalised form of graphene which forms a stable dispersion in water, has many unique properties, including being a liquid crystal. Individual GO sheets are one atom thin, and as wide as the thickness of human hair. However, to be useful, they need to be assembled into complex 3-dimensional shapes which preserves their high surface area and surface chemistry. Such porous 3-dimensional assemblies of GO are called aerogels, and when filled with water, they are called hydrogels.

The researchers used a second liquid crystal material called CTAB (cetyltrimethylammonium bromide), to aggregate GO flakes into small particles of graphene oxide hydrogels, without needing to reduce them to graphene. This was achieved by dropping the GO dispersion in water in the form of small droplets into a solution of CTAB in water. When the GO droplets hit the surface of the CTAB solution, they behave very similarly to when a jet of hot smoke hits cold air. The GO drop flows into the CTAB solution in the form of a ring, or toroid, because of differences in the density and surface tension of the two liquids. 

By controlling various parameters of this process, the researchers have produced particles in the shape of spheres (balls), toroids (donuts) and intermediate shapes that resemble jellyfish. Dr Yizhen Shao, a recently graduated PhD student and lead author of this paper, said: “we have developed a universal phase diagram for the formation of these shapes, based on four dimensionless numbers – the weber, Reynolds, Onhesorge and Weber numbers, representing the inertial, viscous, surface tension and electrostatic forces respectively. This can be used to accurately control the particle morphology by varying the formation parameters.”

The authors highlight the significance of these particles in water purification. Kaiwen Nie, a PhD student and co-author of the paper, said: “We can tune the surface chemistry of the graphene flakes in these particles to extract positively or negatively charged contaminants from water. We can even extract uncharged contaminants or heavy metal ions by appropriately functionalising the graphene surface.”

 

]]>
Thu, 09 Feb 2023 15:10:02 +0000 https://content.presspage.com/uploads/1369/500_grapheneaerogelparticles.jpg?10000 https://content.presspage.com/uploads/1369/grapheneaerogelparticles.jpg?10000
UK Business Secretary praises UK-UAE graphene innovation partnership /about/news/uk-business-secretary-praises-uk-uae-graphene-innovation-partnership/ /about/news/uk-business-secretary-praises-uk-uae-graphene-innovation-partnership/555445UK Business and Energy Secretary Grant Shapps has seen first-hand how Swagֱ’s pioneering work in graphene is set to deliver global impact thanks to an international partnership.

]]>
UK Business and Energy Secretary Grant Shapps has seen first-hand how Swagֱ’s pioneering work in graphene is set to deliver global impact thanks to an international partnership.

Grant Shapps, The Secretary of State for the UK’s Department for Business, Energy & Industrial Strategy (BEIS), has recently been on a visit to the Middle East, which included the United Arab Emirates (UAE) where he met representatives from a partnership between Swagֱ and UAE’s Khalifa University.

The ambitious Swagֱ-Khalifa partnership is part of the Research & Innovation Center for Graphene and 2D Materials (RIC-2D) which is looking at ways to apply graphene and related advanced materials to technologies that will help make our world more sustainable, including water desalination, emission-busting construction materials, energy storage and lightweighting applications.

Grant Shapps visited the state-of-the-art research facilities and on his , the Secretary of State said: “Graphene can be used in everything from touchscreens to reinforcing steel. Made first in Swagֱ, its importance is now being realised around the world. I enjoyed seeing how Khalifa University is further developing graphene uses for the future, in partnership with Swagֱ.”

James Baker, CEO at Graphene@Swagֱ, said: was great to co-host the Secretary of State and the UK delegation on their visit to meet our partners at Khalifa University.

was a very positive meeting that focused on graphene products and applications. Our conversation covered the heritage of the right through to the creation of the Graphene Engineering Innovation Centre, a Swagֱ facility set up in partnership with UAE-based Masdar to accelerate the commercialisation of graphene and related 2D materials.

“We also discussed our joint work with the RIC-2D programme and the ambitious commercial opportunities that are supporting the drive towards a sustainable future, including our latest project around creating membrane technology in support of clean water.”

The Kahlifa delegation meeting the Secretary of State also included Professor Sir John O’Reilly, President of Khalifa University; Dr Arif Al Hammadi, Executive Vice President; Dr Steve Griffiths, Senior Vice President for Research and Development and Professor of Practice; Fahad Almaskari, Engagement Director; Fahad Alabsi, Associate Director, Commercialization, RIC-2D Research Center.

During Grant Shapps’ visit to the region the . The Clean Energy Memorandum of Understanding (MoU) has now been signed by the two nations and will support the .

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

]]>
Tue, 31 Jan 2023 15:18:55 +0000 https://content.presspage.com/uploads/1369/500_52625386508-3ee4c42b9f-o.jpg?17560 https://content.presspage.com/uploads/1369/52625386508-3ee4c42b9f-o.jpg?17560
Graphene researchers discover long-term memory in 2D nanofluidic channels /about/news/graphene-researchers-discover-long-term-memory-in-2d-nanofluidic-channels/ /about/news/graphene-researchers-discover-long-term-memory-in-2d-nanofluidic-channels/555945Published in , a collaboration between teams from the National Graphene Institute at Swagֱ, and the École Normale Supérieure (ENS), Paris, demonstrated the Hebbian learning in artificial nanochannels, where the channels showed short and long term memory. 

]]>
Published in , a collaboration between teams from the (NGI) at Swagֱ, and the (ENS), Paris, demonstrated the Hebbian learning in artificial nanochannels, where the channels showed short and long term memory. Hebbian learning is a technical term introduced in 1949 by Donald Hebb, describing the process of learning by repetitively doing an action.

Hebbian learning is a well-known learning mechanism, it is the process when we ‘get used’ to doing an action. Similar to what occurs in neural networks, the researchers were able to show the existence of memory in two-dimensional channels which are similar to atomic-scale tunnels with heights varying from several nanometers down to angstroms (10-10 m). This was done using simple salts (including table salt) dissolved in water flowing through nanochannels and by the application of voltage (< 1 V) scans/pulses.

The study spotlights the importance of the recent development of ultrathin nanochannels. Two types of nanochannels were used in this study. The ‘pristine channels’ were from the Swagֱ team led by , which are obtained by the assembly of 2D layers of MoS2. These channels have little surface charge and are atomically smooth. ’s group at ENS developed the ‘activated channels’, these have high surface charge and are obtained by electron beam etching of graphite.

An important difference between solid-state and biological memories is that the former works by electrons, while the latter have ionic flows central to their functioning. While solid-state silicon or metal oxide based ‘memory devices’ that can ‘learn’ have long been developed, this is an important first demonstration of ‘learning’ by simple ionic solutions and low voltages. “The memory effects in nanochannels could have future use in developing nanofluidic computers, logic circuits, and in mimicking biological neuron synapses with artificial nanochannels”, said co-lead author Prof. Lyderic Bocquet.

Swagֱ group-RBCo-lead author Prof. Radha Boya, added that “the nanochannels were able to memorise the previous voltage applied to them and their conductance depends on their history of the voltage application.” This means the previous voltage history can increase (potentiate in terms of synaptic activity) or decrease (depress) the conduction of the nanochannel. Dr Abdulghani Ismail from the National Graphene Institute and co-first author of the research said, “We were able to show two types of memory effects behind which there are two different mechanisms. The existence of each memory type would depend on the experimental conditions (channel type, salt type, salt concentration, etc.).” 

Paul Robin from ENS and co-first author of the paper added, “the mechanism behind memory in ‘pristine MoS2 channels’ is the transformation of non-conductive ion couples to a conductive ion polyelectrolyte, whereas for ‘activated channels’ the adsorption/desorption of cations (the positive ions of the salt) on the channel’s wall led to the memory effect.” 

Co-authors: Prof Lyderic Bocquet, Paul Robin, Dr Theo Emmerich (from Laboratoire de Physique, École Normale Supérieure, Paris)

Dr Theo Emmerich from ENS and co-first author of the article also commented, “our nanofluidic memristor is more similar to the biological memory when compared to the solid-state memristors”. This discovery could have futuristic applications, from low-power nanofluidic computers to neuromorphic applications.

 

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships tackling some of the planet's biggest questions. #ResearchBeacons

]]>
Wed, 25 Jan 2023 14:50:45 +0000 https://content.presspage.com/uploads/1369/500_toc-19jan23-rboya.jpg?10000 https://content.presspage.com/uploads/1369/toc-19jan23-rboya.jpg?10000
Swagֱ spin-out that looks to revolutionise water filtration gets £500,000 funding boost /about/news/manchester-spin-out-that-looks-to-revolutionise-water-filtration-gets-500000-funding-boost/ /about/news/manchester-spin-out-that-looks-to-revolutionise-water-filtration-gets-500000-funding-boost/554225, a spin-out company based at Swagֱ that is developing a breakthrough water filtration technology, which promises to be both greener and cheaper, has secured SEED equity investment of £500,000 to help scale-up.

]]>
A spin-out company based at Swagֱ that is developing a breakthrough water filtration technology, which promises to be both greener and cheaper, has secured SEED equity investment of £500,000 to help scale up.   

, with its mission to enable cleaner water supplies for the world's growing demand, has developed an energy-efficient and highly versatile membrane coating based around a material called modified molybdenum disulphide (MoS2) to create an innovative water filtration solution.  

The technology comes from research led by  and , at Swagֱ, working in partnership with innovation experts at the University’s (GEIC).  

This team has used a two-dimensional version of MoS2, part of which is a natural crystal with physical properties that are complementary to those of , the world’s first 2D material, originally isolated at Swagֱ. 

Molymem and its filtration application has been awarded an investment funding package of £500,400. Among the private sector investors are , Swagֱ Angels and NorthInvest.

Ray Gibbs, Chairman and Director at Molymem, said this new funding would enable the company to scale up and deliver on its mission. He said: “New 2D materials for membranes are needed to improve sustainability, accessibility and tackle one of the world’s greatest problems – delivering clean fresh water for all.”

“The application of 2D advanced materials into water filtration technologies will, we are confident, help provide solutions to this critical global challenge.”   

Working with businesses and utility companies Molymem has coated a variety of membrane systems and tested the rejection of various salts and other organic molecules, such as nitrates. The performance is equal to or better than existing commercial solutions - but at much lower cost, making the Molymem system a 'greener and cheaper' option.”

Dr Mark Bissett Chief Scientific Officer (Molymem Limited), Reader in Nanomaterials, Dept. of Materials (University of Swagֱ) commented ’s incredibly exciting to see our technology, which was developed here in the labs at the University of Swagֱ as a fundamental research project, be successfully spun out into a company and receiving this funding. Going forward I look forward to seeing our technology have real commercial impact and see our products improving sustainability in multiple industries.”

Richard Lydon, a leading filtration expert and senior advisor to Molymem explained: “Access to clean fresh water is one of the greatest problems we face in the world. Factors that impact on the availability of clean water include climate change, water quality, pollution, and population growth.

“At the same time, water and wastewater treatment plants across the world need to be upgraded to keep pace with legislation and the ever-growing demand for drinking water. This unique technology is an added value to existing membrane systems reducing particulate 'clogging' of the current filter, enabling improved life, reducing the use of chemicals and increasing flux (water flow). The Molymem platform is robust in any environment and can be tailored (through specific functionalisation of the coating) to reject target particulates such as nitrates, phosphates, PFAS/PFOS, dissolved organics, heavy metals and other pollutants, offering unique selling points to meet the needs of the water industry.”

Rajat Malhotra, Managing Partner, Wren Capital and a member of Cambridge Angels commented, “ We liked the sustainability aspect of Molymem and the strong management to apply novel technology into a significant market in need of new membranes to deal with the increasing threat of particulate pollution (especially nitrates) in the water course. We, therefore, wanted to lead a SEED funding round on behalf of Cambridge Angels who were subsequently joined by investors from Swagֱ Angels and NorthInvest. This first tie-up makes a strong strategic link between Swagֱ and Cambridge to enhance co-syndication between the investor groups and the hope of more to come.”   

David Levine, Principal of Swagֱ Angels said: "We're very excited to have participated in Molymem's recent raise. Swagֱ Angels was established specifically to fund early-stage, game-changing technologies and technology businesses and help support levelling-up for the North."

Jordan Dargue, Board Director of NorthInvest said: ''We were so impressed with the Molymem team's expertise and passion.  The technology is innovative and solves a real market problem so I was thrilled to be able to help the company access funding at this crucial stage.  What’s more, this round of investment for Molymem is a perfect example of how angel networks can collaborate to help Northern entrepreneurs access investment.  I’m so pleased for Richard and the Molymem team and look forward to seeing what the future holds. “

Notes to Editor

1) Richard Lydon is a leading figure in the filtration, separation and membrane markets and is providing valuable advice and guide the Molymem team as it embarks on its commercial journey in wider areas of the clean and deep tech market sectors.

 2) Molymem is a University of Swagֱ spin-out and has developed and patented a new class of novel nano-coating applied to membranes for ultra-high filtration performance. The 2D functionalised materials can be retrofitted easily to existing membranes, utilising existing infrastructure and a large installed base. The initial focus is in the demand-driven space of clean water, water reuse and species selectivity but with potential across numerous other industry sectors including air, gas cleaning and future clean energy sectors. Chosen routes to market will be via licence and royalty deals with Membrane suppliers, Original Equipment Manufacturers and System Integrators.

3) Cambridge Angels is a leading UK business angel network providing smart capital from entrepreneurs to entrepreneurs. The collaborative Cambridge-based group, actively mentors and invests in innovative teams and their ideas, equipping generations of entrepreneurs to generate returns and help realise their full potential. The group has a strong ethos of backing merit and supporting entrepreneurship. Cambridge Angels members, most of whom are successful entrepreneurs, invest in a wide range of start-up and scale-up businesses with a particular focus on deep-tech, and tools and technologies supporting healthcare.

]]>
Wed, 11 Jan 2023 12:53:56 +0000 https://content.presspage.com/uploads/1369/500_molymem.jpg?10000 https://content.presspage.com/uploads/1369/molymem.jpg?10000
Landmark agreement between Greater Swagֱ and Innovate UK to boost innovation and R&D in the city-region /about/news/landmark-agreement-between-greater-manchester-and-innovate-uk-to-boost-innovation-and-rd-in-the-city-region/ /about/news/landmark-agreement-between-greater-manchester-and-innovate-uk-to-boost-innovation-and-rd-in-the-city-region/550854Greater Swagֱ’s burgeoning innovation ecosystem has taken another major step forward with the signing of an agreement with the UK's national innovation agency, Innovate UK.

]]>
Greater Swagֱ’s burgeoning innovation ecosystem has taken another major step forward with the signing of an agreement with the UK's national innovation agency, Innovate UK.

The Memorandum of Understanding (MOU) between Greater Swagֱ Combined Authority (GMCA), Innovation Greater Swagֱ and Innovate UK commits the parties to closer collaboration to support business innovation.

The agreement seeks to strengthen research and innovation clusters across Greater Swagֱ and to accelerate investments around long-term innovation developments.

The region’s universities will be at the heart of the city’s innovation ecosystem. Swagֱ will continue to build on its existing world class tradition of commercialisation of research in step with GMCA and Innovate UK. This past year alone has seen the University create ten new spin-out companies.

The parties have also agreed to work on a shared plan for the period to 2030, which will set out how the development of innovation assets in Greater Swagֱ will inform Innovate UK activities.

The agreement was signed by Mayor of Greater Swagֱ, Andy Burnham, Innovate UK CEO, Indro Mukerjee, and Chair of Greater Swagֱ Business Board (GM LEP), Lou Cordwell, at a special event held today (Friday 2 December) at the (GEIC) at Swagֱ. The GEIC is a facility which helps companies develop new technologies, products and processes that exploit the properties of .

Andy Burnham, Mayor of Greater Swagֱ, said: “This agreement will strengthen collaboration between Greater Swagֱ and Innovate UK, and in doing so help deliver a high-growth, high-wage economy powered by innovation.

“Going back to the first Industrial Revolution, Greater Swagֱ has a proud history of industry and innovation. More recently we pioneered the development of graphene, and have emerging strengths in areas like advanced manufacturing, health innovation and the digital and creative industries.

“Levelling up the country means rebalancing R&D spending so that regions can realise their potential. Innovation stimulates sustainable growth, which leads to better quality jobs and increased wages, raising the living standards of people across Greater Swagֱ.”

Professor Luke Georghiou, Deputy President and Deputy Vice Chancellor, Swagֱ, said: “This is another important step for Greater Swagֱ’s innovation ecosystem which is all about partnership. Swagֱ will keep working to ensure that we are a globally- renowned hub for creating innovations that meet society’s greatest challenges.”

Indro Mukerjee, CEO of Innovate UK, said: “Innovate UK is building strong regional partnerships across the UK to support local innovation and commercialisation. The agreement with Greater Swagֱ is a good example of that and our commitment to levelling up the UK.

“I am pleased to be working closely with Mayor Andy Burnham, Cllr Bev Craig and Lou Cordwell to help deliver growth and productivity through innovation across Greater Swagֱ.”

Cllr Bev Craig, Leader of Swagֱ City Council and GMCA Portfolio Lead for Economy and Business, said: “Our agreement with Innovate UK will help businesses and residents in Greater Swagֱ benefit from the opportunities presented by innovation.

“Business innovation creates good jobs in more places. It drives economic growth, accelerates our transition to net zero, and helps reduce health inequalities. We look forward to working with Innovate UK to strengthen Greater Swagֱ’s innovation ecosystem.”

Professor Richard Jones, Vice-President for Regional Innovation and Civic Engagement, at Swagֱ (and independent science advisor for Innovation GM), said: “The partnership will provide an innovation blueprint for Greater Swagֱ – and therefore is a major milestone in boosting the economic development and prosperity of this city-region.

“Swagֱ has been a driving force in getting this project launched so it was fitting that the agreement was formally signed in the University’s Graphene Engineering Innovation Centre. This facility demonstrates how new science and innovation can be commercialised, so attracting new investment; supporting some of this region’s great innovative businesses; as well as creating new commercial opportunities on our own doorstep.”     

Through Innovation Greater Swagֱ, the city-region is pioneering a new approach to strengthening and broadening its innovation ecosystem – the network that comprises businesses of all sizes, universities, local and national government, funding providers and investors, and entrepreneurs.

Greater Swagֱ’s outlines how sustainable growth powered by innovation could deliver a £3.8bn economic benefit and over 100,000 jobs across Greater Swagֱ.

Greater Swagֱ was one of three areas in the country chosen to develop an Innovation Accelerator. Launched as part of the Levelling Up White Paper, Innovation Accelerators will support businesses and research in Greater Swagֱ, the West Midlands and Glasgow city-region with a share of £100m of Government funding.

This followed the , published in July last year, which set out Government’s vision to make the UK a global hub for innovation by 2035, and .

]]>
Fri, 02 Dec 2022 13:58:45 +0000 https://content.presspage.com/uploads/1369/500_signingofinnovationgmmoueventdec2022-andyburnhamloucordwellindromukerjeechrisoglesby.jpg?10000 https://content.presspage.com/uploads/1369/signingofinnovationgmmoueventdec2022-andyburnhamloucordwellindromukerjeechrisoglesby.jpg?10000
Graphene scientists explore electronic materials with nanoscale curved geometries /about/news/graphene-scientists-explore-electronic-materials-with-nanoscale-curved-geometries/ /about/news/graphene-scientists-explore-electronic-materials-with-nanoscale-curved-geometries/547830In a recently published paper, an international research group examined significant development directions in the field of electronic materials with curved geometries at the nanoscale. From microelectronic devices with enhanced functionality to large-scale nanomembranes consisting of networks of electronic sensors that can provide improved performance.

]]>
In a recently published paper in , an international research group from Italy, Germany, the UK, and China examined significant development directions in the field of electronic materials with curved geometries at the nanoscale. From microelectronic devices with enhanced functionality to large-scale nanomembranes consisting of networks of electronic sensors that can provide improved performance.

The scientists argue that exciting developments induced by curvature at the nanoscale allow them to define a completely new field – curved nanoelectronics. The paper examines in detail the origin of curvature effects at the nanoscale and illustrates their potential applications in innovative electronic, spintronic and superconducting devices.

Curved solid-state structures also offer many application opportunities. On a microscopic level, shape deformations in electronic nanochannels give rise to complex three-dimensional spin textures with an unbound potential for new concepts in spin-orbitronics, which will help develop energy-efficient electronic devices. Curvature effects can also promote, in a semimetallic nanowire, the generation of topological insulating phases that can be exploited in nanodevices relevant for quantum technologies, like quantum metrology. In the case of magnetism, curvilinear geometry directly forges the magnetic exchange by generating an effective magnetic anisotropy, thus prefiguring a high potential for designing magnetism on demand.

Dr Ivan Vera-Marun from the National Graphene Institute at Swagֱ commented: “nanoscale curvature and its associated strain result in remarkable effects in graphene and 2D materials. The development in preparation of high-quality extended thin films, as well as the potential to arbitrarily reshape those architectures after their fabrication, has enabled first experimental insights into how next-generation electronics can be compliant and thus integrable with living matter”.

The paper also describes the methods needed to synthesise and characterise curvilinear nanostructures, including complex 3D nanoarchitectures like semiconductor nanomembranes and rolled up sandwiches of 2D materials, and highlights key areas for the future developments of curved nanoelectronics.

The image above features a sketch of different research topics currently explored in electronic materials with nanoscale curved geometries. From left to right: geometry-controlled quantum spin transport, spin-triplet Cooper pairs in superconductors, magnetic textures in curvilinear structures.

]]>
Thu, 17 Nov 2022 13:24:28 +0000 https://content.presspage.com/uploads/1369/500_ivan-image.jpg?10000 https://content.presspage.com/uploads/1369/ivan-image.jpg?10000
UoM spin-out Watercycle Technologies wins Innovate UK grant for lithium extraction /about/news/uom-spin-out-watercycle-technologies-wins-innovate-uk-grant-for-lithium-extraction/ /about/news/uom-spin-out-watercycle-technologies-wins-innovate-uk-grant-for-lithium-extraction/545959Watercycle Technologies – a spin-out company from Swagֱ that specialises in recovery of scarce minerals through filtration - has won a £500,000 Innovate UK Smart Grant, in partnership with Cornish Lithium, to test its ground-breaking direct lithium extraction (DLE) process in Cornwall.

]]>
Watercycle Technologies – a spin-out company from Swagֱ that specialises in recovery of scarce minerals through filtration - has won a £500,000 Innovate UK Smart Grant, in partnership with Cornish Lithium, to test its ground-breaking direct lithium extraction (DLE) process in Cornwall.

Watercycle’s patented filtration process can selectively extract lithium from sub-surface waters, such as those found in the South West of the UK. Given lithium’s essential role in battery technologies, the ability to obtain it from water cost-effectively and establish a domestic supply of the mineral is vital for the UK’s Net Zero strategy. 

is a mineral exploration and development company focused on the environmentally responsible extraction of lithium from geothermal waters and hard rock in the historic mining district of Cornwall.

Earlier this year, Watercycle Technologies became a Tier 2 Partner of the University's , allowing for access to lab space, state-of-the-art equipment and engineering and academic expertise at the UK’s leading institute for R&D and commercialisation of applications around graphene and 2D materials.

The ‘Smart’ grant is Innovate UK's responsive funding programme. It has focused eligibility criteria and scope to support SMEs and their partners to develop disruptive innovations with significant potential for rapid economic return to the UK.

Under the terms of the agreement, Watercycle will deliver a containerised filtration system to extract lithium from Cornish Lithium’s project in Cornwall at a pilot scale. The project, which includes an environmental impact assessment, is anticipated to complete in October 2023.  

Watercycle CEO Dr Seb Leaper said: “Having already proven that our proprietary filtration membranes and systems work in lab conditions, we are excited to be working with Cornish Lithium to demonstrate their scalability and accelerate the creation of a resilient, domestic lithium supply chain in the UK.  

"This agreement marks the next step in our development strategy as we look at the commercialisation of our technology, which is capable of treating a wide range of water types and can deliver dramatic reductions in costs, carbon emissions and water consumption compared with current processes.”

Watercycle co-founder and CTO Dr Ahmed Abdelkarim added: is great to be working with like-minded partners, Cornish Lithium and Innovate UK, which, like us, are focused on making a positive impact on the global transition through advancing innovative technologies. 

"Lithium is a critical element with EV demand set to grow 418% from 468 GWh this year to 2.4 TWh by 2030 and we are delighted to be part of that chain, offering a British solution to the challenge of primary lithium production, which is the first link within the wider EV supply chain.”

Dr Rebecca Paisley, Lead Geochemist at Cornish Lithium, said: “Cornish Lithium is keen to support projects from UK-based universities and the companies commercialising them, which we believe have the potential to be both game-changing and contribute to the UK’s Net Zero strategy. 

"Working with Watercycle in the development of a pilot system aligns strongly with our Research and Innovation strategy, as well as our continued efforts to trial multiple DLE technologies at pilot scale in Cornwall to establish the most effective and responsible process flow sheet. We have a good relationship with the Watercycle team and look forward to progressing the project over the next 12 months.”

For more information, visit . To discover how Swagֱ Innovation Factory helps academic and student inventors create social, economic and environmental impact with their work visit .

 is one of Swagֱ’s  - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons.

]]>
Fri, 04 Nov 2022 13:44:57 +0000 https://content.presspage.com/uploads/1369/500_watercycletechnologiesteam1200px.jpg?10000 https://content.presspage.com/uploads/1369/watercycletechnologiesteam1200px.jpg?10000
Scientists discover they can pull water molecules apart using graphene electrodes /about/news/scientists-discover-they-can-pull-water-molecules-apart-using-graphene-electrodes/ /about/news/scientists-discover-they-can-pull-water-molecules-apart-using-graphene-electrodes/536220Graphene scientists from Swagֱ discovered that water molecules on the surface of graphene electrodes split exponentially faster with stronger electrical forces – a phenomenon known as the Wien effect.

]]>
Writing in , a team led by Dr Marcelo Lozada-Hidalgo based at the (NGI) used graphene as an electrode to measure both the electrical force applied on water molecules and the rate at which these break in response to such force. The researchers found that water breaks exponentially faster in response to stronger electrical forces.

Marcelo Lozada-HidalgoThe researchers believe that this fundamental understanding of interfacial water could be used to design better catalysts to generate hydrogen fuel from water. This is an important part of the UK’s strategy towards achieving a net zero economy. Dr Marcelo Lozada-Hidalgo said: “We hope that the insights from this work will be of use to various communities, including physics, catalysis, and interfacial science and that it can help design better catalysts for green hydrogen production”.

A water molecule consists of a proton and a hydroxide ion. Dissociating it involves pulling these two constituent ions apart with an electrical force. In principle, the stronger one pulls the water molecule apart, the faster it should break. This important point has not been demonstrated quantitatively in experiments.

Electrical forces are well known to break water molecules, but stronger forces do not always lead to faster water dissociation, which has puzzled scientists for a long time. A key difference with graphene electrodes is that these are permeable only to protons. The researchers found that this allows separating the resulting proton from the hydroxide ion across graphene, which is a one-atom-thick barrier that prevents their recombination. This charge separation is essential to observe the electric field acceleration of water dissociation. Another key advantage of graphene is that it allows evaluating the electric field at the graphene-water interface experimentally, which allows for quantitative characterisation of the field effect.

Junhao CaiThe results can be explained using the classical Onsager theory, which had remained unverified experimentally in the important case of water. Junhao Cai, a PhD student and co-first author of the work said: “We were surprised to find how well the Onsager theory fitted our data. This theory provides insights into interfacial water, including an independent estimate of its dielectric constant, which remains poorly understood”.

Eoin GriffinThe authors are excited about the possibilities offered by their experimental setup. Eoin Griffin, PhD student and co-first author of the work said: “Graphene electrodes combine three properties that, as far as we know, are never found together in a single system: only protons permeate through the crystal, it is one-atom-thick and it can sustain very strong electrical forces. This combination allows us to essentially pull apart the first layer of water molecules on the graphene surface”.

]]>
Fri, 07 Oct 2022 07:00:00 +0100 https://content.presspage.com/uploads/1369/500_marcelohydrogen3pcblack.png?10000 https://content.presspage.com/uploads/1369/marcelohydrogen3pcblack.png?10000
Swagֱ to build an interplanetary future through innovation in advanced materials and robots /about/news/manchester-to-build-an-interplanetary-future-through-innovation-in-advanced-materials-and-robots/ /about/news/manchester-to-build-an-interplanetary-future-through-innovation-in-advanced-materials-and-robots/529994Pioneering scientists and engineers from Swagֱ are looking to build a future in space through innovation in advanced materials and autonomous systems - including revolutionary concepts in space habitats and the trustworthy robots to help build them.

]]>
Pioneering scientists and engineers from Swagֱ are looking to build a future in space through innovation in advanced materials and autonomous systems - including revolutionary concepts in space habitats and the trustworthy robots to help build them.

In the UK, the space sector is worth over £16.4 billion per year and employs more than 45,000 people, while satellites and space tech underpins £360 billion per year of wider economic activity. Globally, projections reveal that the space economy

To optimise opportunities in this booming market, organisations such as the European Space Agency are looking to build space habitats, including a and ultimately . However, these types of ambitious projects will require breakthroughs in new materials to help construct resilient structures and infrastructure.

In response to this challenge, Dr Vivek Koncherry - a University alumnus and now CEO of Graphene Innovations Swagֱ, a start-up based at the - is looking to build pressurised vessels that will create a modular space station for Low Earth Orbit. These pioneering vessels are to be made from graphene-enhanced carbon fibre as the addition of this 2D material will lightweight the habitat, as well as lending its thermal management properties to help regulate extremes of temperature.

Dr Koncherry has been working closely with global architects SOM, who have been studying the complexity of space habitation for many years as they look to .

As space explorers of the future look to go beyond the Earth’s orbit, travelling from a graphene space ship to begin building bases on the Moon – or even Mars – Dr Koncherry’s colleague Dr Aled Roberts, also part of the GEIC, is conducting research to develop bio-based building materials.

Dr Roberts, who is also part of the , explains that one of the biggest challenges for “off-world habitat construction” is the transportation of building materials, which can cost upwards of £1m 'per brick’. Until the conceptual can be built, one solution, says Dr Roberts, could be using local resources, such as lunar or Martian soil to make building materials. This thinking has led to proposed products like (aka extraterrestrial regolith biocomposites), a material using the local planetary soil and a bio-based binder to make sturdy bricks to build space habitats.

To support this lunar or Martian construction work, artificial intelligence (AI) researchers at Swagֱ - who are expert in developing autonomous systems and resilient AI-powered robots - have helped develop sophisticated software to enable ‘co-bots’ to aid astronauts in exploration, in construction and in monitoring these new structures.

This work has been led by Professor Michael Fisher and his colleagues that form the . A specialism at Swagֱ involves designing and building AI-powered autonomous robots that can work in the harshest of environment, such as space, and can reliably undertake a wide range of tasks “on their own”.

Previous research in this field has looked to support improved capability of NASA’s Astronaut-Rover teams and the Swagֱ team continue their collaboration with NASA. Future manned missions to the Moon and Mars are expected to use autonomous rovers and robots to assist astronauts during extravehicular activity (EVA), including science, technical and construction operations.

“An important feature of the Swagֱ work is to develop and apply systems making sure these robots are trustworthy and do what we expect,” explained Professor Fisher.

Once a space habitat has been built, its human occupants will need to survive in their new environment - and NASA researchers have identified hydroponics as a suitable method for growing food in outer space. Swagֱ agri-tech experts are looking at the future of food production, which includes the application of hydroponics in vertical farming production.

Dr Beenish Siddique, founder of (below) , a UK government-backed enterprise which is also based in the GEIC, is leading a team to develop a pioneering a hydrogel called GelPonics.

Beenish Siddique - AEH Innovative Hydrogel in lab with plants

This growth medium conserves water and filters out pathogens to protect plants from disease, while automated technology includes the use of a graphene-based sensor that allows remote monitoring and management of the irrigation management system. This process is much less labour intensive and ultimately the GelPonics system is designed to be used in the harshest of environments.

Combining two strengths – advanced materials and trustworthy automation – to create a USP for space

Space is a fast-growing opportunity for exponential market growth - and provides an arena for the UK engineering sector to apply its world-leading expertise. The R&D being pioneered by experts at Swagֱ to deliver revolutionary innovation in space habitat technology provides a model approach.

Swagֱ has combined two of its key engineering strengths – advanced materials and autonomous systems – to find a unique proposition on space tech innovation.

Dr Vivek Koncherry says: “If you want to implement nanomaterials - or indeed the next generation of advanced materials - into space application you will also need automation.

“In Swagֱ, everything comes together – you have expertise in both advanced materials and automated systems. The skilled people we need to work with are based in the same place, which creates a unique proposition.”

Vivek and Jin - robotics2

Dr Koncherry has built a pilot digital manufacturing line, designed to handle materials of the future by integrating robotics, AI and IoT systems in his state-of-the-art Alchemy Lab based in the GEIC (above). He has an ambition to grow the manufacturing base in Greater Swagֱ and from this provide a model to underpin the UK’s national capability to making advanced products.

"Dr Koncherry adds: “Space is at the tipping point of being accessible to the commercial mainstream - the opportunities this provides are boundless. Just like in the original industrial revolution, Swagֱ now finds itself with the right innovation at the right time to capitalise on the space revolution.”

To find out more about Swagֱ’s contribution to the space sector read: 

]]>
Thu, 06 Oct 2022 14:55:08 +0100 https://content.presspage.com/uploads/1369/500_multi-dome-base-being-constructed-2.jpg?10000 https://content.presspage.com/uploads/1369/multi-dome-base-being-constructed-2.jpg?10000
Graphene as 'the philosopher’s stone’: turning waste into gold /about/news/graphene-as-the-philosophers-stone-turning-waste-into-gold/ /about/news/graphene-as-the-philosophers-stone-turning-waste-into-gold/522802Scientists from Swagֱ and China have demonstrated that graphene can be a kind of ‘philosopher’s stone’, allowing gold extraction from waste containing only trace amounts of gold.

]]>
Throughout history, alchemists believed in the existence of the philosopher’s stone: a substance that could turn cheap substances into precious gold. Now scientists from Swagֱ, Tsinghua University in China and the Chinese Academy of Sciences have shown that graphene can be a kind of philosopher’s stone, allowing gold extraction from waste containing only trace amounts of gold (down to billionth of a percent).

This new, seemingly magical application of graphene works quite straightforwardly: add graphene into a solution containing traces of gold and, after a few minutes, pure gold appears on graphene sheets, with no other chemicals or energy input involved. After this you can extract your pure gold by simply burning the graphene off.

The research, , shows that 1 gram of graphene can be sufficient for extracting nearly 2 grams of gold. As graphene costs less than $0.1 per gram, this can be very profitable, with gold priced at around $70 per gram.

Dr Yang Su from Tsinghua University, who led the research efforts, commented: “This apparent magic is essentially a simple electrochemical process. Unique interactions between graphene and gold ions drive the process and also yield exceptional selectivity. Only gold is extracted with no other ions or salts.”

Gold is used in many industries including consumer electronics (mobile phones, laptops etc.) and, when the products are eventually discarded, little of the electronic waste is recycled. The graphene-based process with its high extraction capacity and high selectivity can reclaim close to 100% of gold from electronic waste. This offers an enticing solution for addressing the gold sustainability problem and e-waste challenges.

“Graphene turns rubbish into gold, literally,” added Professor Andre Geim from Swagֱ, another lead author and Nobel laureate responsible for the first isolation of graphene.

“Not only are our findings promising for making this part of the economy more sustainable, but they also emphasise how different atomically-thin materials can be from their parents, well-known bulk materials,” he added. “Graphite, for example, is worthless for extracting gold, while graphene almost makes the philosopher’s stone”.

Professor Hui-ming Cheng, one of the main authors from the Chinese Academy of Sciences, commented: “With the continuing search for revolutionary applications of graphene, our discovery that the material can be used to recycle gold from electronic waste brings additional excitement to the research community and developing graphene industries.”

]]>
Tue, 16 Aug 2022 14:30:00 +0100 https://content.presspage.com/uploads/1369/500_goldextractionrecyclingusinggraphene.jpg?10000 https://content.presspage.com/uploads/1369/goldextractionrecyclingusinggraphene.jpg?10000
Swagֱ researchers make ‘significant advance’ in 2D material science with diversely behaving layers in a single bulk material /about/news/manchester-researchers-make-significant-advance-in-2d-material-science-with-diversely-behaving-layers-in-a-single-bulk-material/ /about/news/manchester-researchers-make-significant-advance-in-2d-material-science-with-diversely-behaving-layers-in-a-single-bulk-material/522795Scientists from Swagֱ have developed a novel yet simple method for producing vertical stacks of alternating superconductor and insulator layers of tantalum disulphide (TaS2), potentially speeding up manufacture of ‘heterostructure’ devices for high-mobility transistors, photovoltaics and optoelectronics.

]]>
Scientists from Swagֱ have developed a novel yet simple method for producing vertical stacks of alternating superconductor and insulator layers of tantalum disulphide (TaS2). The findings, from a team led by Professor Rahul Nair, could speed up the process of manufacturing such devices – so-called van der Waals heterostructures – with application in high-mobility transistors, photovoltaics and optoelectronics.

Van der Waals heterostructures are much sought after since they display many unique and useful properties not found in naturally occurring materials. In most cases, they are prepared by manually stacking one layer over the other in a time-consuming and labour-intensive process.

Published last week , the study - led by researchers based at the National Graphene Institute (NGI) - describes synthesis of a bulk van der Waals heterostructure consisting of alternating atomic layers of 1T and 1H TaS2. 1T and 1H TaS2 are different polymorphs (materials with the same chemical composition but with a variation in atomic arrangement) of TaS2 with completely different properties – the former insulating, the latter superconducting at low temperatures.

The new heterostructure was obtained through the synthesis of 6R TaS2 (a rare type of TaS2, with alternating 1T and 1H layered structure) via a process known as ‘phase transition’ at high temperature (800˚C). Due to its unusual structure, this material shows the co-existence of superconductivity and charge density waves, a very rare phenomenon.

Dr Amritroop Achari, who led the experiment said: “Our work presents a new concept for designing bulk heterostructures. The novel methodology allows the direct synthesis of bulk heterostructures of 1T‐1H TaS2 by a phase transition from a readily available 1T TaS2. We believe our work provides significant advances in both science and technology.”

International collaboration

The work was conducted in collaboration with scientists from the NANOlab Center of Excellence at the University of Antwerp, Belgium. Their high‐resolution scanning electron microscopy analysis unambiguously proved the alternating 1T‐1H hetero-layered structure of 6R TaS2 for the first time and paved the way to interpret the findings.

Professor Milorad Milošević, the lead researcher from the University of Antwerp, commented: “This demonstration of an alternating insulating‐superconducting layered structure in 6R TaS2 opens a plethora of intriguing questions related to anisotropic behaviour of this material in applied magnetic field and current, emergent Josephson physics, terahertz emission etc., in analogy to bulk cuprates and iron‐based superconductors.”

The findings could therefore have a widespread impact on the understanding of 2D superconductivity, as well as further design of advanced materials for terahertz and Josephson junctions-based devices, a cornerstone of second-generation quantum technology.

Main image (top):  Electron microscopy image of the synthesized 6R TaS2 with an atomic model of the material on the left. The brown spheres represent Ta atoms and the yellow spheres represent sulphur atoms. The atomic positions and arrangement in the microscopic image are an exact match with the model, confirming its structure.

]]>
Tue, 02 Aug 2022 15:22:22 +0100 https://content.presspage.com/uploads/1369/500_6rtas2-electronmicroscopeimage.png?10000 https://content.presspage.com/uploads/1369/6rtas2-electronmicroscopeimage.png?10000
Graphene scientists capture first images of atoms ‘swimming’ in liquid /about/news/graphene-scientists-capture-first-images-of-atoms-swimming-in-liquid/ /about/news/graphene-scientists-capture-first-images-of-atoms-swimming-in-liquid/521859Graphene scientists from Swagֱ have created a novel ‘nano-petri dish’ using two-dimensional (2D) materials to create a new method of observing how atoms move in liquid, with potential application in green energy technologies.

]]>
Graphene scientists from Swagֱ have created a novel ‘nano-petri dish’ using two-dimensional (2D) materials to create a new method of observing how atoms move in liquid.

Publishing in the journal, , the team led by researchers based at the (NGI) used stacks of 2D materials including graphene to trap liquid in order to further understand how the presence of liquid changes the behaviour of the solid.

The team were able to capture . The findings could have widespread impact on the future development of green technologies such as hydrogen production.

When a solid surface is in contact with a liquid, both substances change their configuration in response to the proximity of the other. Such atomic scale interactions at solid-liquid interfaces govern the behaviour of batteries and fuel cells for clean electricity generation, as well as determining the efficiency of clean water generation and underpinning many biological processes.

One of the lead researchers, Professor Sarah Haigh, commented: “Given the widespread industrial and scientific importance of such behaviour it is truly surprising how much we still have to learn about the fundamentals of how atoms behave on surfaces in contact with liquids. One of the reasons information is missing is the absence of techniques able to yield experimental data for solid-liquid interfaces.”

Transmission electron microscopy (TEM) is one of only few techniques that allows individual atoms to be seen and analysed. However, the TEM instrument requires a high vacuum environment, and the structure of materials changes in a vacuum. First author, Dr Nick Clark explained: “In our work we show that misleading information is provided if the atomic behaviour is studied in vacuum instead of using our liquid cells.”

The NGI's Professor Roman Gorbachev has pioneered the stacking of 2D materials for electronics but here his group have used those same techniques to develop a ‘double graphene liquid cell’. A 2D layer of molybdenum disulphide was fully suspended in liquid and encapsulated by graphene windows. This novel design allowed them to provide precisely controlled liquid layers, enabling the unprecedented videos to be captured showing the single atoms ’swimming’ around surrounded by liquid.

By analysing how the atoms moved in the videos and comparing to theoretical insights provided by colleagues at Cambridge University, the researchers were able to understand the effect of the liquid on atomic behaviour. The liquid was found to speed up the motion of the atoms and also change their preferred resting sites with respect to the underlying solid.

The team studied a material that is promising for green hydrogen production but the experimental technology they have developed can be used for many different applications.

Dr Nick Clark said: “This is a milestone achievement and it is only the beginning – we are already looking to use this technique to support development of materials for sustainable chemical processing, needed to achieve the world’s net zero ambitions.”

is one of Swagֱ’s - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

]]>
Wed, 27 Jul 2022 16:00:00 +0100 https://content.presspage.com/uploads/1369/500_output-01.png?10000 https://content.presspage.com/uploads/1369/output-01.png?10000
National Graphene Institute scientist shortlisted for prestigious £350,000 engineering award /about/news/national-graphene-institute-scientist-shortlisted-for-prestigious-350000-engineering-award/ /about/news/national-graphene-institute-scientist-shortlisted-for-prestigious-350000-engineering-award/519516National Graphene Institute researcher Professor Coskun Kocabas is among six world-leading scientists shortlisted for the Institution of Engineering and Technology’s (IET) prestigious A F Harvey Engineering Research Prize, worth £350,000.

]]>
National Graphene Institute researcher is among six world-leading scientists shortlisted for the Institution of Engineering and Technology’s (IET) prestigious A F Harvey Engineering Research Prize, worth £350,000.

The prize is awarded annually in recognition of outstanding achievement in engineering research in the fields of medical, microwave and radar or laser/optoelectronic engineering, with the prize fund awarded to support further research led by the recipient. This year’s theme is lasers and optoelectronics.

Professor Kocabas’ research interests include optoelectronic applications of graphene and other 2D materials. He is nominated for his significant contributions to controlling light with graphene-based devices over a broad spectral range from visible light to microwave.

Outstanding research achievements

Sir John O’Reilly, Chair offor the prize, said: “The A F Harvey Engineering Research Prize recognises the outstanding research achievements of the recipient, from anywhere in the world, who is identified through a search and selection process conducted by a panel of international experts from around the globe.

“We are incredibly proud, through the generous legacy from the late Dr A F Harvey, to be able to recognise and support the furtherance of pioneering engineering research in these fields and thereby their subsequent impact in advancing the world around us," he added. "I’d like to congratulate our six finalists.”

The prize-winner will be chosen from and announced in December 2022. The winning researcher will deliver a keynote lecture on their research in spring 2023.

The IET’s A F Harvey prize is named after Dr A F Harvey, who bequeathed a generous sum of money to the IET for a trust fund to be set up in his name to further research in the specified fields. For more information, visit:

is one of Swagֱ’s - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

]]>
Wed, 13 Jul 2022 11:13:28 +0100 https://content.presspage.com/uploads/1369/500_coskun-kocabas.jpg?10000 https://content.presspage.com/uploads/1369/coskun-kocabas.jpg?10000
GEIC partner Watercycle Technologies secures funding for lithium extraction process /about/news/geic-partner-watercycle-technologies-secures-funding-for-lithium-extraction-process/ /about/news/geic-partner-watercycle-technologies-secures-funding-for-lithium-extraction-process/507540Watercycle Technologies, a spin-out from Swagֱ, has secured initial funding for an innovative technology that uses advanced graphene-based membranes and systems to extract lithium and other minerals from brines and water solutions, a vital step in the sustainability of new battery technologies.

]]>
Watercycle Technologies, a spin-out from Swagֱ, has secured initial funding for an innovative technology that uses advanced graphene-based membranes and systems to extract lithium and other minerals from brines and water solutions.

Direct lithium extraction (DLE) is a vital process in the push towards self-sufficiency for the UK and Europe in lithium, a key component in modern battery technology.

Led by Sebastian Leaper, a former PhD student from the Department of Materials at Swagֱ, has taken Tier 2 membership of the Graphene Engineering Innovation Centre (GEIC), with lab space and access to advanced 2D materials facilities and expertise in prototyping. 

The pre-seed funding round has been led by , an investor focused on innovations around sustainability. 

Recovery from battery recycling

Watercycle Technologies has already demonstrated that its solutions can extract lithium from UK-based brines and can recover it from lithium batteries during the recycling process. This investment will allow the business to further develop their prototype solutions and test them at scale at live extraction and recycling locations.

The technology also shows the potential to refine the lithium up to battery-grade, which will allow the processing of battery-grade lithium to occur at production sites around the world. Together, these capabilities could significantly improve the environmental footprint of lithium production for EVs.

Dr Sebastian Leaper, CEO of Watercycle Technologies Limited, explains: “Our lives are increasingly dependent on the ebb and flow of lithium ions. They store and transport an ever-greater portion of the energy we need for our devices, cars and power grid and enable us to transition away from fossil fuels. 

“Access to significant quantities of low-cost, low-carbon lithium is fundamental to tackling climate change and we at Watercycle Technologies are striving to make this possible,” he adds. "We are very grateful for the support of Aer Ventures in this journey, as they share our ambition to help build a sustainable, circular economy for future generations to enjoy."

Chris Rowley, Managing Partner of Aer Ventures, said: “Watercycle Technologies is exactly the type of business we exist to support. With a sustainable vision and a proven technology, the business has the potential to solve one of our major environmental problems – the need for critical minerals to support the transition to Net Zero. 

"With serious commentators such as the International Energy Agency estimating the world could require over 50 times more lithium by 2040 than it produced in 2020, the innovation Watercycle Technologies provides has never been more essential and we are pleased to support the business in taking this game-changing technology to market.”

Andrew Wilkinson, CEO of , said: “This new University of Swagֱ spinout has amazing potential to significantly reduce the cost and environmental impact of lithium production. It also enables countries with access to lithium-rich brines and recycled batteries, like the UK, to become self-sufficient in this strategically vital raw material. Although initially focusing on the extraction of lithium salts, Watercycle Technologies’ membranes and systems can easily be adapted to extract other high-value materials and be used in applications such as desalination.”

 is one of Swagֱ’s  - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons.

]]>
Wed, 25 May 2022 08:26:58 +0100 https://content.presspage.com/uploads/1369/500_watercycletechnologiesteamphoto.jpeg?10000 https://content.presspage.com/uploads/1369/watercycletechnologiesteamphoto.jpeg?10000
NGI shows rare physics with electrically tunable graphene device /about/news/ngi-shows-rare-physics-with-electrically-tunable-graphene-device/ /about/news/ngi-shows-rare-physics-with-electrically-tunable-graphene-device/501595A research team led by Swagֱ’s National Graphene Institute (NGI) has developed a tunable graphene-based platform that allows for fine control over the interaction between light and matter in the terahertz (THz) spectrum, revealing rare phenomena known as exceptional points.

]]>
A research team led by Swagֱ’s has developed a tunable graphene-based platform that allows for fine control over the interaction between light and matter in the terahertz (THz) spectrum, revealing rare phenomena known as exceptional points. The work - co-authored by researchers from in the US - is (8 April) in Science.

The work could advance optoelectronic technologies to better generate, control and sense light and potentially communications, according to the researchers. They demonstrated a way to control THz waves, which exist at frequencies between those of microwaves and infrared waves. The findings could contribute to the development of beyond-5G wireless technology for high-speed communication networks.

Weak and strong interactions

Light and matter can couple, interacting at different levels: weakly, where they might be correlated but do not change each other’s constituents; or strongly, where their interactions can fundamentally change the system. The ability to control how the coupling shifts from weak to strong and back again has been a major challenge to advancing optoelectronic devices - a challenge researchers have now solved.

coskun-kocabas crop“We have demonstrated a new class of optoelectronic devices using concepts of topology - a branch of mathematics studying properties of geometric objects,” said co-corresponding author , Professor of 2D device materials at Swagֱ (pictured). “Using exceptional point singularities, we show that topological concepts can be used to engineer optoelectronic devices that enable new ways to manipulate terahertz light.”

Exceptional points are spectral singularities — points at which any two spectral values in an open system coalesce. They are, unsurprisingly, exceptionally sensitive and respond to even the smallest changes to the system, revealing curious yet desirable characteristics, according to co-corresponding author , Associate Professor of Engineering Science and Mechanics at Penn State.

“At an exceptional point, the energy landscape of the system is considerably modified, resulting in reduced dimensionality and skewed topology,” said Özdemir, who is also affiliated with the at Penn State. “This, in turn, enhances the system’s response to perturbations, modifies the local density of states leading to the enhancement of spontaneous emission rates and leads to a plethora of phenomena. Control of exceptional points, and the physical processes that occur at them, could lead to applications for better sensors, imaging, lasers and much more.”

Platform composition

The platform the researchers developed consists of a graphene-based tunable THz resonator, with a gold-foil gate electrode forming a bottom reflective mirror. Above it, a graphene layer is book-ended with electrodes, forming a tunable top mirror. A non-volatile ionic liquid electrolyte layer sits between the mirrors, enabling control of the top mirror’s reflectivity by changing the applied voltage. In the middle of the device, between the mirrors, are molecules of alpha lactose, a sugar commonly found in milk.  

The system is controlled by two adjusters. One raises the lower mirror to change the length of the cavity - tuning the frequency of resonation to couple the light with the collective vibrational modes of the organic sugar molecules, which serve as a fixed number of oscillators for the system. The other adjuster changes the voltage applied to the top graphene mirror - altering the graphene’s reflective properties to transition the energy loss imbalances to adjust coupling strength. The delicate, fine tuning shifts weakly coupled terahertz light and organic molecules to become strongly coupled and vice versa.

“Exceptional points coincide with the crossover point between the weak and strong coupling regimes of terahertz light with collective molecular vibrations,” Özdemir said.

He noted that these singularity points are typically studied and observed in the coupling of analogous modes or systems, such as two optical modes, electronic modes or acoustic modes.

“This work is one of rare cases where exceptional points are demonstrated to emerge in the coupling of two modes with different physical origins,” Kocabas said. “Due to the topology of the exceptional points, we observed a significant modulation in the magnitude and phase of the terahertz light, which could find applications in next-generation THz communications.”

Unprecedented phase modulation in the THz spectrum

As the researchers apply voltage and adjust the resonance, they drive the system to an exceptional point and beyond. Before, at and beyond the exceptional point, the geometric properties - the topology - of the system change.

One such change is the phase modulation, which describes how a wave changes as it propagates and interacts in the THz field. Controlling the phase and amplitude of THz waves is a technological challenge, the researchers said, but their platform demonstrates unprecedented levels of phase modulation. The researchers moved the system through exceptional points, as well as along loops around exceptional points in different directions, and measured how it responded through the changes. Depending on the system’s topology at the point of measurement, phase modulation could range from zero to four magnitudes larger.

“We can electrically steer the device through an exceptional point, which enables electrical control on reflection topology,” said first author Dr M Said Ergoktas. “Only by controlling the topology of the system electronically could we achieve these huge modulations.” 

According to the researchers, the topological control of light-matter interactions around an exceptional point enabled by the graphene-based platform has potential applications ranging from topological optoelectronic and quantum devices to topological control of physical and chemical processes.

 

Contributors include: Kaiyuan Wang, Gokhan Bakan, Thomas B. Smith, Alessandro Principi and Kostya S. Novoselov, University of Swagֱ; Sina Soleymani, graduate student in the Penn State Department of Engineering Science and Mechanics; Sinan Balci, Izmir Institute of Technology, Turkey; Nurbek Kakenov, who conducted work for this paper while at Bilkent University, Turkey.

The European Research Council, Consolidator Grant (SmartGraphene), the Air Force Office of Scientific Research Multidisciplinary University Research Initiative Award on Programmable Systems with Non-Hermitian Quantum Dynamics and the Air Force Office of Scientific Research Award supported this work.

]]>
Fri, 08 Apr 2022 10:09:29 +0100 https://content.presspage.com/uploads/1369/500_ep-012-sugar-bigview.jpg?10000 https://content.presspage.com/uploads/1369/ep-012-sugar-bigview.jpg?10000
Pioneering graphene partnership sets the standard /about/news/pioneering-graphene-partnership-sets-the-standard/ /about/news/pioneering-graphene-partnership-sets-the-standard/499667The ongoing collaboration between Swagֱ’s graphene scientists and Northern England-based outdoor sports brand inov-8 has been awarded as an ‘outstanding’ example of innovation and wealth creation in the UK by Innovate UK.

]]>
The ongoing collaboration between Swagֱ’s graphene scientists and Northern England-based outdoor sports brand has been awarded as an ‘outstanding’ example of innovation and wealth creation in the UK by .

The partnership, which has seen the launch of and subsequent development of the high-performance graphene-enhanced footwear, is now in the spotlight for its success in taking fundamental research to a successful global hit product.

Officially launched in 2018, the collaborative partners announced that they had been able to develop a graphene-enhanced rubber through a research project which began behind the scenes in 2016.

They developed G-GRIP rubber outsoles for running, hiking and fitness shoes that in testing outlasted 1,000 miles, are scientifically proven to be 50% harder wearing, and deliver the world’s toughest grip.

Subsequently, graphene was infused into the midsole foam as well, to provide superior and long-lasting energy return that supercharges feet. The G-FLY foam midsole was launched in 2021.

Aravind Vijayaraghavan, Professor of Nanomaterials at Swagֱ, said: “This partnership is an excellent example of how a university research group and a SME can collaborate closely to take cutting edge technology from lab to market at a rapid pace. It demonstrates the significant benefits that graphene can bring to everyday products and impact our daily lives.”

Now Innovate UK has honoured the recently completed between the two organisations with the highest possible grade of ‘Outstanding’. The project has set the bar high, resulting in not only a world-leading product range, but also a highly effective partnership that is boosting the University’s commercial reputation – and that of a fellow northern brand.

inov-8 founder Wayne Edy said: “This powerhouse forged in Northern England has taken the world of sports footwear by storm. We’re combining science and innovation together with entrepreneurial speed and achieving incredible things.”

Graphene is the lauded atomically thin material, first isolated from graphite by Swagֱ scientists, leading to the award of the Nobel Prize in Physics in 2010. At just one atom thick it is lightweight yet incredibly strong, meaning it has many unique properties. inov-8 was the first brand in the world to use the material in sports footwear, and both G-GRIP and G-FLY are patent-pending technologies.

That footwear has since gone on to win multiple awards. The TRAILFLY G 270 and TRAILFLY ULTRA G 300 MAX were both named ‘Trail Running Shoe of the Year’ in the Runner’s World UK Gear Awards for 2020 and 2021 respectively. Graphene-enhanced shoes have also been worn by athletes to set records, especially over ultramarathons distances. Damian Hall wore them to set a new fastest time for the 185-mile Wainwright’s Coast to Coast trail in 39 hours and 18 minutes, as did Jasmin Paris to famously win the 268-mile Spine Race outright and set a new record time that still stands.

The ongoing research and innovation has now also seen the KTP Associate, Dr Nadiim Domun, hired by inov-8 as a Senior Materials Engineer to retain his expertise and to continue the graphene technology development through close collaboration with Swagֱ.

Graphene has the potential to change lives in so many ways. Athletic equipment is just one current success story for the versatile material. Water filtration, aviation and consumer electronics are among the many applications that are exciting scientists, product developers and the public the world over.

2021 saw Swagֱ placed at the top of the table for the UK's Knowledge Transfer Partnerships and become partner of choice for innovation in businesses.

]]>
Tue, 22 Mar 2022 11:24:45 +0000 https://content.presspage.com/uploads/1369/500_inov8graphenepartnership.jpg?10000 https://content.presspage.com/uploads/1369/inov8graphenepartnership.jpg?10000
Graphene@Swagֱ picks up four prizes at CogX Festival Awards /about/news/graphenemanchester-picks-up-four-prizes-at-cogx-festival-awards/ /about/news/graphenemanchester-picks-up-four-prizes-at-cogx-festival-awards/499177Graphene@Swagֱ and its partners enjoyed a night of success at the CogX Awards in London, winning four prizes for innovation at a gala evening in London.

]]>
Graphene@Swagֱ and its partners enjoyed a night of success at the CogX Awards in London, winning four prizes for innovation at a gala evening in London.

The awards event, held on Monday 14 March at the Samsung KX venue in London’s King’s Cross, was a precursor to the main CogX Festival, an annual conference held every summer in the capital, focusing on advanced technology, data science and AI.

The winners were decided by of academics and tech industry experts, who ran the rule over entries in six categories: Recognising Leadership, Best Innovation, Best Tech Product, Global Goals, Outstanding Research and Achievements and Best Climate Innovation.

Among 24 prizes on offer in the Innovation categories, four went to graphene-related products and projects, all four being part of the Graphene@Swagֱ community, as follows:

Best Climate Change Innovation in Carbon Emissions and Clean Energy

- low-carbon concrete developed by Nationwide Engineering Group and Swagֱ’s Graphene Engineering Innovation Centre and Department of Mechanical, Aerospace and Civil Engineering.

Best Innovation (Food Tech):

- technologies around vertical farming to minimise water waste, energy consumption and cost, led by Dr Beenish Siddique.

Best Innovation (Diagnostics): 

Dr Rob Wykes at - for work around epilepsy using graphene to develop flexible, highly sensitive neural probes.

Best Innovation (Space):

Graphene Space Habitat – design concept and composites technology for space habitation by Dr Vivek Koncherry and global architects Skidmore, Owings and Merrill.

Chief Executive of Graphene@Swagֱ James Baker said: “I’m really pleased for the companies and groups involved in these projects. Sometimes we haven’t been as quick as we might to put ourselves forward for these sorts of awards, so it’s great to see to see recognition for the hard work that’s gone into all of these innovations. I look forward to us playing our part in the conference in June.”

Dr Rob Wykes said he was delighted to win the award. “Dissemination of this collaborative scientific work to a larger audience through the CogX platform will bring to the public’s attention the advantages of graphene-based brain interface devices,” he added.

“This work specifically highlights the innovation of graphene micro-transistor arrays, and their superior ability to record a wide range pathological brain signals associated with several common neurological conditions, in particular epilepsy. We believe that future clinical translation of this technology will result in a diagnostic tool that promises to improve patient management and treatment options.”

In addition to the awards, CogX invited Alex Bornyakov, Ukraine’s Deputy Minister for Digital Transformation, to explain how the UK tech community can help the humanitarian crisis in eastern Europe. Bornyakov was introduced by Chris Philp MP, Minister for Tech and the Digital Economy, who gave opening remarks and a call-to-action for the UK community.

The CogX Festival runs from 13-15 June. Find out more about how you can get involved at .

 is one of Swagֱ’s  - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons.

]]>
Thu, 17 Mar 2022 14:08:03 +0000 https://content.presspage.com/uploads/1369/500_paulwiperatcogx.jpg?10000 https://content.presspage.com/uploads/1369/paulwiperatcogx.jpg?10000
NGI uses twist to engineer 2D semiconductors with built-in memory functions /about/news/ngi-uses-twist-to-engineer-2d-semiconductors-with-built-in-memory-functions/ /about/news/ngi-uses-twist-to-engineer-2d-semiconductors-with-built-in-memory-functions/495916A team of researchers at Swagֱ’s National Graphene Institute and the National Physical Laboratory has demonstrated that slightly twisted 2D transition metal dichalcogenides (TMDs) display room-temperature ferroelectricity.

]]>
A team of researchers at Swagֱ’s National Graphene Institute (NGI) and the National Physical Laboratory (NPL) has demonstrated that slightly twisted 2D transition metal dichalcogenides (TMDs) display room-temperature ferroelectricity.

This characteristic, combined with TMDs’ outstanding optical properties, can be used to build multi-functional optoelectronic devices such as transistors and LEDs with built-in memory functions on nanometre length scale.

Ferroelectrics are materials with two or more electrically polarisable states that can be reversibly switched with the application of an external electric field. This material property is ideal for applications such as non-volatile memory, microwave devices, sensors and transistors. Until recently, out-of-plane switchable ferroelectricity at room temperature had been achieved only in films thicker than 3 nanometres.

2D heterostructures

Since the isolation of graphene in 2004, researchers across academia have studied a variety of new 2D materials with a wide range of exciting properties. These atomically thin 2D crystals can be stacked on top of one another to create so-called heterostructures - artificial materials with tailored functions.

More recently, a team of researchers from NGI, in collaboration with NPL, demonstrated that below a twist angle of 2o, atomic lattices physically reconstruct to form regions (or domains) of perfectly stacked bilayers separated by boundaries of locally accumulated strain.  For two monolayers stacked parallel to each other, a tessellated pattern of mirror-reflected triangular domains is created. Most importantly, the two neighbouring domains have an asymmetric crystal symmetry, causing an asymmetry in their electronic properties.

Ferroelectric switching at room temperature

In the work, , the team demonstrated that the domain structure created with low-angle twisting hosts interfacial ferroelectricity in bilayer TMDs. Kelvin probe force microscopy revealed that neighbouring domains are oppositely polarised and electrical transport measurements demonstrated reliable ferroelectric switching at room temperature.

The team went on to develop a scanning electron microscope (SEM) technique with enhanced contrast, using signal from back-scattered electrons. This made it possible to apply an electric field in-situ while imaging changes to the domain structure in a non-invasive manner, providing essential information on how the domain switching mechanism works. The boundaries separating the oppositely polarised domains were found to expand and contract depending on the sign of the applied electric field and led to a significant redistribution of the polarised states.

This work clearly demonstrates that the twist degree of freedom can allow the creation of atomically thin optoelectronics with tailored and multi-functional properties.

Wide scope for tailored 2D materialsAstrid_Weston 250px square

Lead author Astrid Weston (pictured right) said: ’s very exciting that we can demonstrate that this simple tool of twisting can engineer new properties in 2D crystals. With the wide variety of 2D crystals to choose from, it provides us with almost unlimited scope to create perfectly tailored artificial materials.”

Co-author Dr Eli G Castanon added: “Being able to observe the pattern and behaviour of ferroelectric domains in structures that have nanometre thickness with KPFM and SEM was very exciting. The advancement of characterisation techniques together with the extensive possibilities for the formation of novel heterostructures of 2D materials paves the way to achieve new capabilities at the nanoscale for many industries.”

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

]]>
Tue, 01 Mar 2022 13:44:03 +0000 https://content.presspage.com/uploads/1369/500_copyofmos2-pressrelease-v4.jpg?10000 https://content.presspage.com/uploads/1369/copyofmos2-pressrelease-v4.jpg?10000
NGI advances graphene spintronics as 1D contacts improve mobility in nano-scale devices /about/news/ngi-advances-graphene-spintronics-as-1d-contacts-improve-mobility-in-nano-scale-devices/ /about/news/ngi-advances-graphene-spintronics-as-1d-contacts-improve-mobility-in-nano-scale-devices/492715Researchers at Swagֱ may have cleared a significant hurdle on the path to quantum computing, demonstrating step-change improvements in the spin transport characteristics of nanoscale graphene-based electronic devices.

]]>
Researchers at Swagֱ may have cleared a significant hurdle on the path to quantum computing, demonstrating step-change improvements in the spin transport characteristics of nanoscale graphene-based electronic devices.

The team - comprising researchers from the National Graphene Institute (NGI) led by Dr Ivan Vera Marun, alongside collaborators from Japan and including students internationally funded by Ecuador and Mexico - used monolayer graphene encapsulated by another 2D material (hexagonal boron nitride) in a so-called van der Waals heterostructure with one-dimensional contacts (main picture, above). This architecture was observed to deliver an extremely high-quality graphene channel, reducing the interference or electronic ‘doping’ by traditional 2D tunnel contacts.

‘Spintronic’ devices, as they are known, may offer higher energy efficiency and lower dissipation compared to conventional electronics, which rely on charge currents. In principle, phones and tablets operating with spin-based transistors and memories could be greatly improved in speed and storage capacity, exceeding Moore’s Law

, the Swagֱ team measured electron mobility up to 130,000cm2/Vs at low temperatures (20K or -253oC). For purposes of comparison, the only previously published efforts to fabricate a device with 1D contacts achieved mobility below 30,000cm2/Vs, and the 130k figure measured at the NGI is higher than recorded for any other previous graphene channel where spin transport was demonstrated.

The researchers also recorded spin diffusion lengths approaching 20μm. Where longer is better, most typical conducting materials (metals and semiconductors) have spin diffusion lengths <1μm. The value of spin diffusion length observed here is comparable to the best graphene spintronic devices demonstrated to date.

Lead author of the study Victor Guarochico said: “Our work is a contribution to the field of graphene spintronics. We have achieved the largest carrier mobility yet regarding spintronic devices based on graphene. Moreover, the spin information is conserved over distances comparable with the best reported in the literature. These aspects open up the possibility to explore logic architectures using lateral spintronic elements where long-distance spin transport is needed.”

Co-author Chris Anderson added: “This research work has provided exciting evidence for a significant and novel approach to controlling spin transport in graphene channels, thereby paving the way towards devices possessing comparable features to advanced contemporary charge-based devices. Building on this work, bilayer graphene devices boasting 1D contacts are now being characterised, where the presence of an electrostatically tuneable bandgap enables an additional dimension to spin transport control.”

Discover more about our capabilities in graphene and 2D material research at .

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

]]>
Thu, 10 Feb 2022 15:10:46 +0000 https://content.presspage.com/uploads/1369/500_toc-graphic-highres1200px.jpg?10000 https://content.presspage.com/uploads/1369/toc-graphic-highres1200px.jpg?10000
Cosmic physics mimicked on table-top as graphene enables Schwinger effect /about/news/cosmic-physics-mimicked-on-table-top-as-graphene-enables-schwinger-effect/ /about/news/cosmic-physics-mimicked-on-table-top-as-graphene-enables-schwinger-effect/491086An international research team led by Swagֱ has succeeded in observing the so-called Schwinger production of particle-antiparticle pairs from vacuum, an elusive process that normally occurs only in cosmic events. 

]]>
An international research team led by Swagֱ has succeeded in observing the so-called Schwinger effect, an elusive process that normally occurs only in cosmic events. By applying high currents through specially designed graphene-based devices, the team - based at the National Graphene Institute - succeeded in producing particle-antiparticle pairs from a vacuum.

A vacuum is assumed to be completely empty space, without any matter or elementary particles. However, it was predicted by Nobel laureate Julian Schwinger 70 years ago that intense electric or magnetic fields can break down the vacuum and spontaneously create elementary particles. 

This requires truly cosmic-strength fields such as those around or created transitorily during high-energy collisions of charged nuclei. It has been a longstanding goal of particle physics to probe these theoretical predictions experimentally and some are currently planned for high-energy colliders around the world.

Now an international, Swagֱ-led research team – headed by another Nobel laureate, Prof Andre Geim, in collaboration with colleagues from UK, Spain, US and Japan - has used graphene to mimic the Schwinger production of electron and positron pairs.

Exceptionally strong electric fields

In the , they report specially designed devices such as narrow constrictions and superlattices made from graphene, which allowed the researchers to achieve exceptionally strong electric fields in a simple table-top setup. Spontaneous production of electron and hole pairs was clearly observed (holes are a solid-state analogue of subatomic particles called positrons) and the process's details agreed well with theoretical predictions.

The scientists also observed another unusual high-energy process that so far has no analogies in particle physics and astrophysics. They filled their simulated vacuum with electrons and accelerated them to the maximum velocity allowed by graphene’s vacuum, which is 1/300 of the speed of light.  At this point, something seemingly impossible happened: electrons seemed to become superluminous, providing an electric current higher than allowed by general rules of quantum condensed matter physics. The origin of this effect was explained as spontaneous generation of additional charge carriers (holes). Theoretical description of this process provided by the research team is rather different from the Schwinger one for the empty space.

“People usually study electronic properties using tiny electric fields that allows easier analysis and theoretical description. We decided to push the strength of electric fields as much as possible using different experimental tricks not to burn our devices,” said the paper’s first author Dr Alexey Berduygin, a post-doctoral researcher in Swagֱ's Department of Physics and Astronomy.

Co-lead author from the same department Dr Na Xin added: “We just wondered what could happen at this extreme. To our surprise, it was the Schwinger effect rather than smoke coming out of our set-up.”

Another leading contributor, Dr Roshan Krishna Kumar from the Institute of Photonic Sciences in Barcelona, said: “When we first saw the spectacular characteristics of our superlattice devices, we thought ‘wow … it could be some sort of new superconductivity’. Although the response closely resembles those routinely observed in superconductors, we soon found that the puzzling behaviour was not superconductivity but rather something in the domain of astrophysics and particle physics. It is curious to see such parallels between distant disciplines.”

The research is also important for the development of future electronic devices based on two-dimensional quantum materials and establishes limits on wiring made from graphene that was already known for its remarkable ability to sustain ultra-high electric currents.

Main illustration by Matteo Ceccanti and Simone Cassandra.

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

]]>
Fri, 28 Jan 2022 10:38:29 +0000 https://content.presspage.com/uploads/1369/500_science-final-4k-compositematteo.jpg?10000 https://content.presspage.com/uploads/1369/science-final-4k-compositematteo.jpg?10000
GEIC partner AEH secures £3.5m for agri-tech manufacturing in Swagֱ /about/news/geic-partner-aeh-secures-35m-for-agri-tech-manufacturing-in-manchester/ /about/news/geic-partner-aeh-secures-35m-for-agri-tech-manufacturing-in-manchester/490657AEH Innovative Hydrogel,  the agri-tech firm founded and led by Swagֱ alumnus  Dr Beenish Siddique, has secured a £3.5m investment package with Canada-based Terra Sana Holdings, with a view to scaling up AEH's manufacturing capability in Greater Swagֱ.

]]>
AEH Innovative Hydrogel, the agri-tech firm founded and led by Swagֱ alumnus  Dr Beenish Siddique, has secured a funding agreement worth £3.5 million with Canada-based biotech investor Terra Sana Holdings, with a view to scaling up AEH's manufacturing capability in Greater Swagֱ.

This new investment recognises AEH's breakthrough contribution to a more sustainable future by using a unique hydrogel - branded GelPonic and developed in the Graphene Engineering Innovation Centre (GEIC) - as a growing medium that is biodegradable and fully sustainable.

The pioneering technology will reduce the use of fresh water in agriculture and therefore enable nations like the UK to grow a wider range of indigenous foods – so reducing  “food miles” – while enabling better yields for farmers in developing nations, where poor quality soils and limited rainfall put pressure on water supply and productivity.

Investment in Greater Swagֱ

Terra Sana's investment will provide AEH with capability to fully develop its vertical farming system and to set up a manufacturing facility in Greater Swagֱ. The new funding is for an initial sum of £1.5m with a follow-on option to subscribe for £2m in 18 months – and it builds on a £1m investment already made by Innovation UK to AEH.

CEO and founder Beenish Siddique said the new funding was welcome as it will accelerate already established sales opportunities for its GelPonic systems on a global basis. Beenish added that this major investment could provide a boost to female entrepreneurs. 

AEH is based in the Graphene Engineering Innovation Centre (GEIC), the world-leading materials innovation accelerator based at Swagֱ. The company was initially supported through the programme, and the move to the GEIC came after AEH Director Dr Farid Khan arranged initial match funding for the subsequent £1m Innovate UK grant.

Ray Gibbs, Chairman of AEH, said: “Setting up AEH in the GEIC gave the company a platform to fast-track its product development. Fundamentally, the government-backed grant awarded in 2020 has been vindicated, with the original investment now being trebled with private sector funding. What’s more, this private backing is new investment coming into Greater Swagֱ and the UK from North America and offers us both UK and international sales opportunities for our GelPonic products.“

Richard Willett, an investor in Terra Sana, has taken a board position in AEH along with Professor Robert Field, Director of the Swagֱ Institute of Biotechnology, at Swagֱ, who will sit on the technical advisory board.

Richard said: “We are delighted to invest in AEH with Beenish as the visionary behind the company. This international partnership will open new overseas market opportunities, including the fast-growing North American market, where Terra Sana has strong links and already established orders. The AEH gel offers significant opportunities in improving soil in impoverished regions and we see enormous potential in the North American vertical farming market that is forecast to reach over $6,500 million by 2028 [1].”

Notes to editors

1)     

About Terra Sana (TS)

TS is a newly formed Canadian company set up to invest in and operate highly advanced indoor growing facilities, biotechnology and vertical farming. It aims to incorporate revolutionary and scalable products and systems that will make an effective, measurable and sustainable impact on solving the global challenge of scarce water and food shortages against a forecast growth in world population to 10 billion by 2050. It is setting up hi-tech greenhouse growing in Mexico designed to meet food produce orders secured from the USA.

About AEH Innovative Hydrogel Limited;

AEH is a start-up founded in late 2018 by entrepreneur Dr Beenish Siddique, who developed a food-based fully recyclable hydroponic gel. Beenish won initial funding from the Eli and Brit Harari Graphene Enterprise competition.  The initial focus on the novel hydrogel growing media is designed to reduce food production costs, improve quality and lower environmental impact. This award winning agri-tech business had a major breakthrough in 2020 when it won a £1m+ grant from Innovate UK to develop a new GelPonic system for vertical farming, offering significantly reduced costs, carbon emissions and water consumption. AEH is based in the University of Swagֱ’s . 

Its technical validation is being performed by the UK backed organisation. CHAP brings together scientists, farmers, advisors and pioneers to advance crop productivity and yield around the world. 

Professor Robert Field has been appointed to the AEH Technical Advisory Board and heads up the .

 is one of Swagֱ’s  - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons.

]]>
Mon, 24 Jan 2022 08:45:01 +0000 https://content.presspage.com/uploads/1369/500_beenishiwdxuom-12022021-drewforsyth-3crop.jpg?10000 https://content.presspage.com/uploads/1369/beenishiwdxuom-12022021-drewforsyth-3crop.jpg?10000
Graphene Innovations Inc Swagֱ (GIIM) joins GEIC as new Tier 1 partner /about/news/graphene-innovations-inc-manchester-giim-joins-geic-as-new-tier-1-partner/ /about/news/graphene-innovations-inc-manchester-giim-joins-geic-as-new-tier-1-partner/489660Graphene@Swagֱ has signed a new Tier 1 partner - Graphene Innovations Inc Swagֱ (GIIM) – a company spun out from Swagֱ led by alumnus and entrepreneur Dr Vivek Koncherry.

]]>
has signed a new Tier 1 partner - Graphene Innovations Inc Swagֱ (GIIM) – a company spun out from Swagֱ led by alumnus and entrepreneur Dr Vivek Koncherry.

GIIM, a company dedicated to the acceleration and deployment of graphene research, will be headquartered at the (GEIC), part of Swagֱ, United Kingdom.

The partnership with the GEIC enables GIIM to equip a private lab in the facility, with access to highly specialised applications labs and equipment, plus the unique academic and engineering expertise of the world-leading graphene and 2D materials community at the University.

GIIM is part of the global group . (GII), led by entrepreneur investors Tom Hirsch (CEO and Growth Officer) and Mark Diamond (Chairman).

Now CEO UK and Europe of GIIM, Dr Koncherry was formerly a post-doctoral Impact Research Fellow in the University’s Department of Materials. His two start-ups were spun into the GEIC: (recycled rubber flooring) and Graphene Space Habitat, designed by global architects Skidmore, Owings and Merrill ().

Dr Koncherry benefited from the support of the European Regional Development Fund (ERDF) Bridging the Gap programme and his work led him to win first prizes at the Eli Harari Graphene Enterprise Awards and the EPSRC Future Composites Manufacturing Hub researchers’ competition in artificial intelligence and internet-of-things. This background fuelled the creation of GIIM, with its first base at the GEIC lab, and the proposed establishment of a larger manufacturing facility in Swagֱ.

GIIM joins the GEIC with the backing of around $5 million (£3.6m) of overseas investment, with a further significant investment in the pipeline for advanced manufacturing capability for construction material in . This funding is subject to the development of new graphene-based products – which is set to include sustainable building materials made from recycled materials – and the investment package is being led by GII (Graphene Innovations Inc) [1].    

With the funding the Swagֱ-based GIIM plans to hire at least 10 people in the first half of 2022, with plans for further appointments later in the year ….

“The accelerated research and global commercialisation of graphene-based products like batteries, solar cells, hydrogen fuel tanks, space habitat, recycled rubber, and sustainable construction materials using advanced robotics, conducted by GIIM’s elite team, will truly put Swagֱ on the world map as the epicentre for commercial graphene research and innovation.” Tom Hirsch (CEO, GII).

"We are excited to see how this international investment into GIIM can help create Swagֱ-based, high-value, sustainable jobs in the UK that in turn can create global impact and address important strategic areas like international space exploration at a large scale. This further supports the Swagֱ region in general as a hotbed of graphene activities and international sales to benefit the UK economy.” Mark Diamond (Chairman, GII).

“We are delighted to extend our partnership with Dr Vivek Koncherry, an example of the exceptional talent that exists at Swagֱ, who we have supported initially as an SME/Spin-in company through our Bridging the Gap programme and now through investment as a key Tier 1 partner to the GEIC. We look forward to further developing this relationship and supporting the GIIM business in its acceleration of graphene-enhanced products and capabilities to the market.” James Baker, CEO of Graphene@Swagֱ.

“GIIM’s partnership with the GEIC further adds to Greater Swagֱ’s credentials as a globally unrivalled concentration of graphene expertise. We’re looking forward to welcoming the diverse talent GIIM will attract to the city region and to supporting this exciting wave of innovation. Not only will it revolutionise technologies internationally, but it will also help us to explore habitation beyond Earth in a sustainable way.” Tim Newns, Chief Executive of MIDAS Greater Swagֱ’s inward investment agency.

“At GIIM, we believe anything is possible for creating global impact through our innovative work. I am grateful to the support of James Baker, Swagֱ, Greater Swagֱ and the new colleague’s Tom Hirsch, Mark Diamond and others for facilitating the work done as a run-up to the successful stage where we are at today.” Dr Vivek Koncherry (CEO, GIIM UK and Europe).

 is one of Swagֱ’s  - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons.

Notes to Editors

[1] Graphene Innovations Inc (GII) is a global graphene investment and entrepreneurship company that will lead on bringing products developed by GIIM to North American markets. Greater Swagֱ-based GIIM will focus on new product development in the UK and be responsible for retailing these products to UK and European markets. 

]]>
Thu, 13 Jan 2022 10:59:39 +0000 https://content.presspage.com/uploads/1369/500_geicrearelevation2newscrop800px-2.jpg?10000 https://content.presspage.com/uploads/1369/geicrearelevation2newscrop800px-2.jpg?10000
New graphene-based neural probes improve detection of epileptic brain signals /about/news/new-graphene-based-neural-probes-improve-detection-of-epileptic-brain-signals/ /about/news/new-graphene-based-neural-probes-improve-detection-of-epileptic-brain-signals/487184A new study shows that flexible brain probes made of graphene micro-transistors can be used to record pathological brain signals associated with epilepsy with excellent fidelity and high spatial resolution.

]]>
New research published today has demonstrated that tiny graphene neural probes can be used safely to greatly improve our understanding of the causes of epilepsy.

The graphene depth neural probe (gDNP) consists of a millimetre-long linear array of micro-transistors imbedded in a micrometre-thin polymeric flexible substrate. The transistors were developed by a collaboration Swagֱ’s and UCL’s Institute of Neurology along with their Graphene Flagship partners.

The paper, published today in , shows that the unique flexible brain probes can be used to record pathological brain signals associated with epilepsy with excellent fidelity and high spatial resolution.

Dr Rob Wykes of Swagֱ’s team said: “Application of this technology will allow researchers to investigate the role infraslow oscillations play in promoting susceptibility windows for the transition to seizure, as well as improving detection of clinically relevant electrophysiological biomarkers associated with epilepsy.”

The flexible gDNP devices were chronically implanted in mice with epilepsy. The implanted devices provided outstanding spatial resolution and very rich wide bandwidth recording of epileptic brain signals over weeks. In addition, extensive chronic biocompatibility tests confirmed no significant tissue damage and neuro-inflammation, attributed to the biocompatibility of the used materials, including graphene, and the flexible nature of the gDNP device.

The ability to record and map the full range of brain signals using electrophysiological probes will greatly advance our understanding of brain diseases and aid the clinical management of patients with diverse neurological disorders. Current technologies are limited in their ability to accurately obtain with high spatial fidelity ultraslow brain signals.

Epilepsy is the most common serious brain disorder worldwide, with up to 30% of people unable to control their seizures using traditional anti-epileptic drugs. For drug-refractory patients, epilepsy surgery may be a viable option. Surgical removal of the area of the brain where the seizures first start can result in seizure freedom; however, the success of surgery relies on accurately identifying the seizure onset zone (SOZ).

Epileptic signals span over a wide range of frequencies –much larger than the band monitored in conventionally used scans. Electrographic biomarkers of a SOZ include very fast oscillations as well as infraslow activity and direct-current (DC) shifts.

Implementing this new technology could allow researchers to investigate the role infraslow oscillations play in promoting susceptibility windows for the transition to seizure, as well as improving detection of clinically relevant electrophysiological biomarkers associated with epilepsy.

Future clinical translation of this new technology offers the possibility to identify and confine much more precisely the zones of the brain responsible for seizure onset before surgery, leading to less extensive resections and better outcomes. Ultimately, this technology can also be applied to improve our understanding of other neurological diseases associated with ultraslow brain signals, such as traumatic brain injury, stroke and migraine.

The paper: Full bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene micro-transistor depth neural probes. Nature Nanotechnology, 2021.

]]>
Wed, 22 Dec 2021 16:01:00 +0000 https://content.presspage.com/uploads/1369/500_nat-nanotech-press-img.jpg?10000 https://content.presspage.com/uploads/1369/nat-nanotech-press-img.jpg?10000
Precision sieving of gases through atomic pores in graphene /about/news/precision-sieving-of-gases-through-atomic-pores-in-graphene/ /about/news/precision-sieving-of-gases-through-atomic-pores-in-graphene/485285By crafting atomic-scale holes in atomically thin membranes, it should be possible to create molecular sieves for precise and efficient gas separation, including extraction of carbon dioxide from air, University of Swagֱ researchers have found.

]]>
By crafting atomic-scale holes in atomically thin membranes, it should be possible to create molecular sieves for precise and efficient gas separation, including extraction of carbon dioxide from air, University of Swagֱ researchers have found.

If a pore size in a membrane is comparable to the size of atoms and molecules, they can either pass through the membrane or be rejected, allowing separation of gases according to their molecular diameters. Industrial gas separation technologies widely use this principle, often relying on polymer membranes with different porosity. There is always a trade-off between the accuracy of separation and its efficiency: the finer you adjust the pore sizes, the less gas flow such sieves allow.

It has long been speculated that, using two-dimensional membranes similar in thickness to graphene, one can reach much better trade-offs than currently achievable because, unlike conventional membranes, atomically thin ones should allow easier gas flows for the same selectivity.

Now a research team led by Professor Sir Andre Geim at Swagֱ, in collaboration with scientists from Belgium and China, have used low-energy electrons to punch individual atomic-scale holes in suspended graphene. The holes came in sizes down to about two angstroms, smaller than even the smallest atoms such as helium and hydrogen.

In December's issue of Nature Communications, that they achieved practically perfect selectivity (better than 99.9%) for such gases as helium or hydrogen with respect to nitrogen, methane or xenon. Also, air molecules (oxygen and nitrogen) pass through the pores easily relative to carbon dioxide, which is >95% captured.

The scientists point out that to make two-dimensional membranes practical, it is essential to find atomically thin materials with intrinsic pores, that is, pores within the crystal lattice itself.

“Precision sieves for gases are certainly possible and, in fact, they are conceptually not dissimilar to those used to sieve sand and granular materials. However, to make this technology industrially relevant, we need membranes with densely spaced pores, not individual holes created in our study to prove the concept for the first time. Only then are the high flows required for industrial gas separation achievable,” says Dr Pengzhan Sun, a lead author of the paper.

The research team now plans to search for such two-dimensional materials with large intrinsic pores to find those most promising for future gas separation technologies. Such materials do exist. For example, there are various graphynes, which are also atomically thin allotropes of carbon but not yet manufactured at scale. These look like graphene but have larger carbon rings, similar in size to the individual defects created and studied by the Swagֱ researchers. The right size may make graphynes perfectly suited for gas separation.

]]>
Thu, 09 Dec 2021 10:08:27 +0000 https://content.presspage.com/uploads/1369/500_graphenesieve-pengzhansun.jpg?10000 https://content.presspage.com/uploads/1369/graphenesieve-pengzhansun.jpg?10000
National Graphene Institute shines in list of most-cited scientists /about/news/national-graphene-institute-shines-in-list-of-most-cited-scientists/ /about/news/national-graphene-institute-shines-in-list-of-most-cited-scientists/483920Researchers from Swagֱ’s National Graphene Institute (NGI) feature prominently in a new list of the most-frequently-cited academics in science over the past decade, providing more than half of Swagֱ’s overall contribution to the study.

]]>
Researchers from Swagֱ’s National Graphene Institute (NGI) feature prominently in a new list of the most-frequently-cited academics in science over the past decade, providing more than half of Swagֱ’s overall contribution to the study.

, compiled by global data analytics firm Clarivate and published on 16 November, features eight researchers based in the NGI, from a total of 15 from UoM who appear in the analysis.

The statistics cover the period from 2010-2020, ranking the top 1% by citations for field and year via online research tool , incorporating natural sciences, engineering, healthcare, business and social science.

The NGI researchers are listed below:

Three of the NGI staff (Geim, Gorbachev and Grigorieva) are among 10 physicists working in the UK who appeared in this year’s list. Only Cambridge (2) also had more than one academic in the UK physics ranking.

In the past decade, with the opening of the £61m  in 2015 and £60m  in 2018, Swagֱ has cemented its place as the home of research into graphene and other 2D materials, leading on both fundamental science and translational R&D into products and applications.

Professor Falko, Director of the NGI (pictured, right), said: “World-leading research is a combination of singular whirlpools, generated by outstanding individuals. The NGI is a home for many of those individuals, and we are constantly looking for a new talent, providing them with excellent infrastructure and offering a unique intellectual environment.”

The Clarivate report lists 6,600 researchers from more than 1,300 institutions and draws on statistics from around 12 million articles in 12,000+ journals.

Overall, the UK ranks third with 492 researchers on the global list (7.5%), behind the US (39.7%) and China (14.2%), but the report notes the UK punching above its weight, stating the result “is a particularly high number of researchers at the very top of their fields in terms of citation impact, given that the United Kingdom has a population 1/5 the size of the United States and 1/20 the size of mainland China.”

By institution, Harvard University leads the way with 214 researchers on the list, ahead of the Chinese Academy of Sciences (194). Oxford University is the leading UK institution at 10th on the global list with 51.

You can find out more about on the Clarivate website.

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

]]>
Wed, 24 Nov 2021 11:06:58 +0000 https://content.presspage.com/uploads/1369/500_ngiatnight.jpeg?10000 https://content.presspage.com/uploads/1369/ngiatnight.jpeg?10000
Doppler effect and sonic boom in graphene devices opens new direction in quantum electronics research /about/news/doppler-effect-and-sonic-boom-in-graphene-devices-opens-new-direction-in-quantum-electronics-resear/ /about/news/doppler-effect-and-sonic-boom-in-graphene-devices-opens-new-direction-in-quantum-electronics-resear/480914A team including researchers from Swagֱ’s National Graphene Institute (NGI) has revealed that sonic boom and Doppler-shifted sound waves can be created in a graphene transistor, giving new insights into this advanced material and its potential for use in nanoscale electronic technologies.

]]>
A team including researchers from Swagֱ’s National Graphene Institute (NGI) has revealed that sonic boom and Doppler-shifted sound waves can be created in a graphene transistor, giving new insights into this advanced material and its potential for use in nanoscale electronic technologies.

When a police car speeds past you with its siren blaring, you hear a distinct change in the frequency of the siren’s noise. This is the Doppler effect. When a jet aircraft’s speed exceeds the speed of sound (about 760 mph), the pressure it exerts upon the air produces a shock wave which can be heard as a loud supersonic boom or thunderclap. This is the Mach effect.

Scientists from universities in Loughborough, Nottingham, Swagֱ, Lancaster and Kansas (US) have discovered that a quantum mechanical version of these phenomena occurs in an electronic transistor made from high-purity graphene. Their new publication: “Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects” was .

The research team used strong electric and magnetic fields to accelerate a stream of electrons in an atomically-thin graphene monolayer composed of a hexagonal lattice of carbon atoms. At a sufficiently high current density, equivalent to around 100 billion amps per square metre passing through the single atomic layer of carbon, the electron stream reaches a speed of 14 kilometers per second (around 30,000mph) and starts to shake the carbon atoms, thus emitting quantised bundles of sound energy called acoustic phonons. This phonon emission is detected as a resonant increase in the electrical resistance of the transistor; a supersonic boom is observed in graphene!

Current dependence of magnetoresistance oscillations in monolayer graphene Hall bars.The researchers also observed a quantum mechanical analogue of the Doppler effect at lower currents when energetic electrons jump between quantised cyclotron orbits and emit acoustic phonons with a Doppler-like up-shift or down-shift of their frequencies, depending on the direction of the sound waves relative to that of the speeding electrons. By cooling their graphene transistor to liquid helium temperature, the team detected a third phenomenon in which the electrons interact with each other through their electrical charge and make “phononless” jumps between quantised energy levels at a critical speed, the so-called Landau velocity.

The devices were fabricated at the NGI in Swagֱ (see 'a' pictured above, where W=15μm). Dr Piranavan Kumaravadivel (right), who led device design and development, said: “The large size and high quality of our devices are key for observing these phenomena. Our devices are sufficiently large and pure that electrons interact almost exclusively with phonons and other electrons. We expect that these results will inspire similar studies of non-equilibrium phenomena in other 2D materials.

“Our measurements also demonstrate that high-quality graphene layers can carry very high continuous current densities, which approach those achievable in superconductors. High-purity graphene transistors could find future applications in nanoscale power electronic technologies.”

Dr Mark Greenway, from Loughborough University, one of the authors of the paper commented: “It is fantastic to observe of all these effects simultaneously in a graphene monolayer. It is due to graphene’s excellent electronic properties that we can investigate these out-of-equilibrium quantum processes in detail and understand how electrons in graphene, accelerated by a strong electric field, scatter and lose their energy. The Landau velocity is a quantum property of superconductors and superfluid helium. So it was particularly exciting to detect a similar effect in the dissipative resonant magnetoresistance of graphene.”

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons


Main image (top): Non-equilibrium magnetoresistance oscillations at T = 40 K: magnetophonon resonance splitting and the Mach effect.

]]>
Mon, 08 Nov 2021 13:20:45 +0000 https://content.presspage.com/uploads/1369/500_currentdependenceofmagnetoresistance.jpg?10000 https://content.presspage.com/uploads/1369/currentdependenceofmagnetoresistance.jpg?10000
Atomic snapshots show fast ion migration in ultra-thin clays /about/news/atomic-snapshots-show-fast-ion-migration-in-ultra-thin-clays/ /about/news/atomic-snapshots-show-fast-ion-migration-in-ultra-thin-clays/471238Research led by The University of Swagֱ has found that ions diffuse 10,000 times faster inside atomically thin clays than in bulk clay crystals, offering the potential to achieve vastly improved membrane performance in applications such as desalination or fuel cells.

]]>
Research led by Swagֱ has found that ions diffuse 10,000 times faster inside atomically thin clays than in bulk clay crystals. Clays are used in a wide variety of membrane applications, so this result offers the potential to achieve vastly improved desalination or fuel cell performance simply by switching to ultra-thin clays when producing the membranes.

Clays, like graphite, consist of crystal layers stacked on top of each other and can be mechanically or chemically separated to produce ultra-thin materials. The layers themselves are just a few atoms thick, while the space between layers is molecularly narrow and contains ions. The interlayer ions can be altered in a controllable way by allowing different ion species to penetrate between the layers.

This property, known as ion exchange, allows for control of the physical properties of these crystals in membrane applications. However, despite its relevance in these emerging technologies, the ion exchange process in atomically thin clays has remained largely unexplored.

Writing in , a team led by Professor Sarah Haigh and Dr Marcelo Lozada-Hidalgo shows that it is possible to take snapshots of ions as they diffuse inside the interlayer space of clay crystals using scanning transmission electron microscopy. This allows study of the ion exchange process with atomic resolution. The researchers were excited to find that ions diffuse exceptionally fast in atomically thin clays – 10,000 times faster than in bulk crystals.

Space to move

Complementary atomic force microscopy measurements showed that the fast migration arises because the long-range (van der Waals) forces that bind together the 2D clay layers are weaker than in their bulk counterparts, which allows them to swell more; effectively the ions have more space so move faster.

Unexpectedly, the researchers also found that by misaligning or twisting two clay layers, they could control the arrangements of the substituted ions within the interlayer space. The ions were observed to arrange in clusters or islands, whose size depends on the twist angle between the layers. These arrangements are known as 2D moire superlattices, but had not been observed before for 2D ion lattices – only for twisted crystals without ions.

Dr Yichao Zou, postdoctoral researcher and first author of the paper, said: "Our work shows that clays and micas enable the fabrication of 2D metal ion superlattices. This suggests the possibility of studying the optical and electronic behaviour of these new structures, which may have importance for quantum technologies, where twisted lattices are being intensively investigated.”

New insights in diffusion

The researchers are also excited about the possibility of using clays and other 2D materials to understand ion transport in low dimensions. Marcelo Lozada-Hidalgo added: "Our observation that ion exchange can be accelerated by four orders of magnitude in atomically thin clays demonstrates the potential of 2D materials to control and enhance ion transport. This not only provides fundamentally new insights into diffusion in molecularly-narrow spaces, but suggests new strategies to design materials for a wide range of applications."

The researchers also believe that their ‘snapshots’ technique has much wider application. Professor Haigh added: "Clays are really challenging to study with atomic resolution in the electron microscope as they damage very quickly. This work demonstrates that with a few tricks and a lot of patience from a dedicated team of researchers, we can overcome these difficulties to study ion diffusion at the atomic scale. We hope the methodology demonstrated here will further allow for new insights into confined water systems as well as in applications of clays as novel membrane materials.”

Further reading on membranes

You can read more about research into membranes using advanced materials at Swagֱ at the following links:

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

]]>
Thu, 26 Aug 2021 16:09:23 +0100 https://content.presspage.com/uploads/1369/500_iontransportinatomicallythinclays-newcrop.png?10000 https://content.presspage.com/uploads/1369/iontransportinatomicallythinclays-newcrop.png?10000
Harvard and Swagֱ pioneer ‘soft’ graphene-containing electrodes that adapt to living tissue /about/news/harvard-and-manchester-pioneer-soft-graphene-containing-electrodes-that-adapt-to-living-tissue/ /about/news/harvard-and-manchester-pioneer-soft-graphene-containing-electrodes-that-adapt-to-living-tissue/463331Researchers from Swagֱ and Harvard University have collaborated on a pioneering project in bioengineering, producing metal-free, hydrogel electrodes that flex to fit the complex shapes inside the human body.

]]>
Researchers from Swagֱ and Harvard University have collaborated on a pioneering project in bioengineering, producing metal-free, hydrogel electrodes that flex to fit the complex shapes inside the human body.

, led by Harvard’s Wyss Institute for Biologically Inspired Engineering in collaboration with the Laboratory of Soft Biolectronic Interfaces at EPFL in Lausanne and Swagֱ’s National Graphene Institute (NGI), mixed carbon nanotubes with a water-based, defect-free solution of graphene, by a team led by Professor Cinzia Casiraghi.

Electrodes are frequently used in medicine to monitor or deliver electrical impulses inside and outside the human body, however performance is currently limited by the rigidity of devices that do not match the soft springiness of living tissue, a property known as viscoelasticity. Electrodes may detach under movement or require greater current to affect their intended target because their shape does not fit precisely to the host site.

The key, according to lead authors Ms Christina Tringides and Professor David Mooney from Harvard, was a hydrogel that could mimic the viscoelasticity of tissue, alongside a conductive ink that could also perform well under flexion.

Replacing rigid metals

Tringides and Mooney, in collaboration with the  in Swagֱ, identified a mixture of graphene flakes and carbon nanotubes as the best conductive filler, replacing the use of traditional rigid metals.

“Part of the advantage of these materials is their long and narrow shape," explained Tringides. "It’s a bit like throwing a box of uncooked spaghetti on the floor – because the noodles are all long and thin, they’re likely to cross each other at multiple points. If you throw something shorter and rounder on the floor, like rice, many of the grains won’t touch at all.”

While the carbon nanotubes used are commercially available, the graphene flake suspension is a process patented by Swagֱ, currently exploited for printed electronics and biomedical applications. This work demonstrated that you need both materials to achieve optimal electrode performance - carbon nanotubes or graphene alone would not suffice.

Cinzia Casiraghi, Professor of Nanoscience from the NGI and Department of Chemistry at Swagֱ, said: “This work demonstrates that high-quality graphene dispersions - made in water by a simple process based on a molecule that one can buy from any chemical supply - have strong potential in bioelectronics. We are very interested in exploiting our graphene (and other 2D materials) inks in this field.”

Collaborative effort

Kostas Kostarelos, Professor of Nanomedicine and leader of the Nanomedicine Lab, added: “This truly collaborative effort between three institutions is a step forward in the development of softer, more adaptable and electroactive devices, where traditional technologies based on bulk and rigid materials cannot be applied to soft tissues such as the brain.”

This research in Swagֱ was supported by the EPSRC Programme Grant  and the International Centre-to-Centre grant with Harvard. Other funders include the: National Science Foundation, National Institutes of Health, Wyss Institute for Biologically Inspired Engineering at Harvard University, National Institute of Dental & Craniofacial Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, Bertarelli Foundation, Wyss Center Geneva, and SNSF Sinergia. 

Advanced materials is one of Swagֱ’s research beacons - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest questions facing the planet. #ResearchBeacons

[Main image copyright of Wyss Institute at Harvard University]

]]>
Wed, 30 Jun 2021 11:36:26 +0100 https://content.presspage.com/uploads/1369/500_hydrogel-electrodes-800px.jpg?10000 https://content.presspage.com/uploads/1369/hydrogel-electrodes-800px.jpg?10000
Nobel Laureate Andre Geim heralds the ‘2D Materials Age’ at global innovation summit /about/news/nobel-laureate-andre-geim-heralds-2d-materials-age-at-global-innovation-summit/ /about/news/nobel-laureate-andre-geim-heralds-2d-materials-age-at-global-innovation-summit/461220On Monday 14 June, Nobel Laureate Sir Andre Geim will be joining some of the brightest minds on the planet - from industry, government, academia, culture and entertainment – to answer the question: ‘How do we get the next 10 years right?’

]]>
On Monday 14 June, Nobel Laureate Sir Andre Geim (pictured) will be joining some of the brightest minds on the planet - from industry, government, academia, culture and entertainment – to answer the question: ‘How do we get the next 10 years right?’

Andre is Regius Professor at Swagֱ and  with colleague Sir Kostya Novoselov for their groundbreaking work on graphene, the one-atom-thick form of carbon with extraordinary physical properties that is transforming materials science and engineering.

Andre will be speaking at the , the global leadership summit focused on AI and transformational technology. The three-day event runs from 14-16 June and will feature world-leading experts discussing the innovations that will shape the next decade and beyond.

Among other high-profile attendees will be Hollywood actor and investor Robert Downey Jrlegendary musician and philanthropist Nile Rodgers, plus Margrethe Vestager, Executive Vice President of the European Commission for A Europe Fit for the Digital Age, and Dame Vivian Hunt, Senior Partner at McKinsey & Company.

Andre will be speaking on the Monday, 14 June, 3:00pm-3:40 pm as part of an in-person session entitled . The presentation will look to explain how progress in material science could drastically change our physical and digital worlds.

A new class of materials

In a , Andre explained: “Graphene is a new class of materials we were not even aware of just 15 years ago. It was completely hidden from materials science.

“And graphene is not alone, it has many brothers, sisters, cousins, and by now we have probably studied dozens of those, hundreds of those materials.

“If we look at the history of the human race it’s gradually built up from the Stone Age, to the Iron and Bronze ages, etc. We now live in the age of plastics and silicon, so I wouldn’t be surprised that next we will be coming into the age of 2D materials.”

The session will be moderated by Timandra Harkness, a BBC Radio 4 presenter, as well as a writer and comedian.

Graphene@Swagֱ, the world-leading research and innovation community based at Swagֱ, will also have a virtual booth at the event where it will showcase how graphene and 2D materials are now going from the lab to market.

Defining the next decade

The CogX Festival gathers the brightest minds in business, government and technology to celebrate innovation, discuss global topics and share the latest trends shaping the defining decade ahead.

The hybrid event will be hosted physically in London's Kings Cross, and is expecting 5,000 attendees in person plus 100,000 virtually, alongside 1,000 speakers, more than 350 virtual exhibitors, three physical stages and 15 virtual stages, making this year's CogX Festival more than double the size of that attended by 44,000 in 2020.

 

]]>
Fri, 11 Jun 2021 09:06:03 +0100 https://content.presspage.com/uploads/1369/500_cogxbannerw-background.jpg?10000 https://content.presspage.com/uploads/1369/cogxbannerw-background.jpg?10000
Mixing solutions in the world’s smallest test tubes /about/news/mixing-solutions-in-the-worlds-smallest-test-tubes/ /about/news/mixing-solutions-in-the-worlds-smallest-test-tubes/460995Visualising chemical reactions at the atomic scale using liquid cell transmission electron microscopy.

]]>
Researchers based at Swagֱ have demonstrated a new method for imaging live chemical reactions with atomic resolution using nanoscale test tubes created using two-dimensional (2D) materials.

The ability to observe solution-based chemical reactions with sub-nanometre resolution in real time has been highly sought after since the invention of the electron microscope 90 years ago.

Imaging the dynamics of a reaction can provide mechanistic insights and signpost strategies for tailoring the properties the resulting materials. A transmission electron microscope (TEM) is one of a few instruments capable of resolving individual atoms, though conventionally it requires completely dry samples imaged in a vacuum environment, precluding any wet chemical synthesis.

Based on developing graphene liquid cells that allow TEM imaging of liquid-phase nanostructures, a team of researchers based at Swagֱ’s , collaborating with researchers at the Leibniz University Hannover, have shown that two solutions can be mixed inside the microscope and imaged in real time.

The new research, published today in details a new imaging platform that has been used to investigate the growth of calcium carbonate. This material is key to many natural and synthetic chemical processes. For example, calcium carbonate is the principal component in the shells of many marine organisms and its formation process is affected by increasing ocean acidification. Calcium carbonate precipitation is also essential for understanding concrete degradation and the material is a ubiquitous additive for many products from paper, plastics, rubbers, paints, and inks to pharmaceutics, cosmetics, construction materials, and animal foods. Nonetheless, despite this widespread use, the crystallisation mechanism for calcium carbonate is widely debated.

In this work the authors provide the key new experimental evidence to support a theoretically predicted complex crystallisation pathway. The team, led by Professor Sarah Haigh and Dr Roman Gorbachev, designed a stack of different two-dimensional materials that contained nanoscale liquid solution compartments formed in microwells etched in hexagonal boron nitride spacer. These microwells were separated by an atomically thin membrane and sealed with graphene which acted as a ‘window’ to allow imaging with the electron beam.

The two pockets of solution were then mixed in the microscope by focussing the electron beam to locally fracture the separation membrane. This caused the two pre-loaded chemical reagents to mix in situ and the crystallisation process could be monitored from start to finish.

Lead author Dr Daniel Kelly explained: “One of the key features of our mixing cell design was the use of the electron beam to both image and puncture the cells. Unlike previous attempts, this made it possible for us to image the reaction from the first moment the solutions came into contact.”

The reaction timeline was captured using videos and advanced image processing technique to measure the evolution of the calcium carbonate species. The unique combination of high spatial resolution and control over the mixing time, as well as in situ elemental analysis, allowed the team to observe the transformation of liquid nanodroplets into amorphous precursors, and finally to crystalline particles. The results show the first visual confirmation of liquid-liquid phase separation, a theory that has been hotly debated amongst inorganic chemists over the past decade.

On the future direction for this new imaging platform, author Dr Nick Clark said: “So far we have focused primarily on characterising the formation of calcium carbonate, however we are optimistic that this type of experiment could be extended to study many other complex mixing reactions.”

is one of Swagֱ’s - examples of pioneering discoveries, interdisciplinary collaboration and cross-sector partnerships that are tackling some of the biggest challenges facing the planet. #ResearchBeacons

]]>
Wed, 09 Jun 2021 12:15:22 +0100 https://content.presspage.com/uploads/1369/500_mixingrender-1.jpg?10000 https://content.presspage.com/uploads/1369/mixingrender-1.jpg?10000